首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
超导电力磁储能系统研究进展(一)——超导储能装置   总被引:1,自引:0,他引:1  
介绍了超导磁储能装置(SMES)的基本原理、系统组成和发展状况,阐述了具有高效、快速响应、能与系统独立进行四象限交换有功和无功功率等特性的SMES在电力系统中应用的重要意义,概述了SMES的应用前景和需要进一步解决的若干问题,并针对我国SMES研究的现状提出了一些建设性意见。  相似文献   

2.
超导储能与超导变电站   总被引:1,自引:0,他引:1  
超导储能 (SMES)是一种快速、高效的储能装置。SMES和超导变电站在电力系统中具有广泛的应用前景。目前已有不少试品、样品问世。我国有在此基础上将其应用于科技奥运的动议。  相似文献   

3.
超导磁储能(superconducting magnetic energy storage,SMES)技术具有响应时间快、功率密度高、生命周期长等特点,在电网电压质量调节、频率控制、脉冲负载供电等方面具有重要的应用价值,被列为《能源技术革命创新行动计划(2016—2030)》之先进储能技术的主要突破方向。介绍了SMES的系统组成原理和系统先进性,概述了SMES在电力系统、舰船供电等场景的应用,综述了SMES近期有代表性的大型项目和研究状态,并从特性互补、提高性能的角度讨论了2种与氢电池和电化学电池组合使用的SMES混合系统。最后,指出了SMES发展和大规模应用所面临的几点挑战,并给出了相应的应对策略。  相似文献   

4.
超导储能单元在并网型风力发电系统的应用   总被引:60,自引:15,他引:45  
风力发电系统发展的趋势是将风力发电机组直接与高压电网相连(简称并网型风力发电系统)。但风速变化造成风力涡轮机械功率变化,会使发电机输出的有功和无功产生波动,从而使电网的电能质量下降。该文提出使用超导储能SMES(super conducting magnetic energy storage system)单元使风力发电机组输出的电压和频率稳定。文中详细介绍了SEMS的调节原理及其最优控制方法,建立了SEMS模型和加入SMES后系统的线性化仿真模型,采用基因算法求最优反馈矩阵,并借助MATLAB软件包设计控制器,仿真结果表明SMES单元对并网型风力发电系统中风力发电机的输出稳定具有极大的改善作用。  相似文献   

5.
建立了风电机组和超导储能(superconducting magnetic energy storage,SMES)装置的数学模型以研究SMES对并网风电场运行稳定性的改善。针对风电系统中经常出现的联络线短路故障和风电场的风速扰动,提出利用SMES安装点的电压偏差作为SMES有功控制器的控制信号的策略。并搭建了风电场接入电网后的仿真模型,对实例系统进行的仿真计算结果表明,SMES采用该控制策略,不仅可以在网络故障后有效地提高风电场的稳定性,而且能够在快速的风速扰动下平滑风电场的功率输出,降低风电场对电网的冲击。  相似文献   

6.
超导储能改善并网风电场稳定性的研究   总被引:20,自引:0,他引:20  
建立了风电机组和超导储能(SMES)装置的数学模型以研究SMES对并网风电场运行稳定性的改善.针对风电系统中经常出现的联络线短路故障和风电场的风速扰动,提出利用SMES安装点的电压偏差作为SMES有功控制器的控制信号的策略.对实例系统进行的仿真计算结果表明,SMES采用该控制策略,不仅可以在网络故障后有效地提高风电场的稳定性,而且能够在快速的风速扰动下平滑风电场的功率输出,降低风电场对电网的冲击.  相似文献   

7.
本文针对电压源型换流器(voltage source converter, VSC)的超导磁储能(superconducting magnetic energy storage, SMES)系统,设计了一款自抗扰控制(active disturbance rejection control, ADRC)。首先,分别建立了SMES的交流侧VSC、直流侧斩波器数学模型;其次,基于非线性扩张状态观测器和线性误差反馈律设计了SMES的交、直流侧ADRC;然后,通过描述函数法分析了ADRC的稳定性;最后,在MATLAB/Simulink平台中搭建了仿真模型。仿真结果表明,与传统PI控制相比,ADRC具有更好的动态响应性能和抗扰动特性,并针对系统参数的不确定性具有更好的鲁棒性,有效地提高了SMES的运行可靠性。  相似文献   

8.
超导磁储能装置在风电系统控制中的应用   总被引:1,自引:0,他引:1  
超导磁储能装置(SMES)是将超导技术、电力电子技术、控制理论和能量管理技术相结合的一种新型储能装置。在实时补偿系统中,由于各种原因会产生不平衡功率,SMES从这一新的角度出发考虑提高电力系统稳定性的问题。理论研究表明,SMES是一种提高电力系统稳定性的非常有效的新措施。为促使这一理论的广泛应用,同时进一步提高SMES的可靠性,研究将超导磁储能装置应用于风电场,以稳定系统输出;在此基础上,对风电场中超导磁储能装置的信号选取和控制策略等关键技术进行研究,阐述了未来的发展趋势。  相似文献   

9.
超导磁储能系统(superconducting magnetic energy storage,SMES)是超导应用研究的热点。SMES利用超导磁体的低损耗和快速响应能力,通过电力电子型变流器与电力系统相连,组合为一种既能为其储存电能又能为其释放电能的多功能电磁系统。SMES的先进功能主要体现于,它能大容量超低损耗的储存电能、改善供电质量、提高系统的稳定性和可靠性。该文以SMES的优化设计(IEEE TEAM Workshop Problem 22)为例,介绍了序贯优化方法和克里金(Kriging)统计近似模型在低维和高维、离散域和连续域优化问题中的应用。优化结果显示,该优化方法能在保证设计精度的前提下,极大降低有限元的计算量。如3参数优化问题中有限元的计算量比直接优化的1/10还要少;而8参数优化问题中有限元的计算量约为直接优化的1/3。从而该方法可广泛应用于电磁装置的优化设计问题。  相似文献   

10.
针对电力系统非线性的特点,将电力系统中的一类仿射非线性系统转换为标准的哈密顿系统,进行了超导储能SMES(Superconducting Magnetic Energy Storage)有功功率的控制设计,对无功功率用传统的比例环节进行设计,基于受控哈密顿系统理论,建立了SMES装置的端口受控哈密顿PCH(Port Controlled Hamiltonian)模型,针对系统的外界干扰和参数不确定性,采用自适应KL2增益控制设计方法设计了含有SMES装置的单机无穷大电力系统的自适用L2增益控制器。仿真结果表明,采用基于哈密顿系统理论的自适应L2增益控制方法对SMES有功功率的设计,利用传统的比例积分PI(Proportion Integration)控制器进行无功功率控制,能够有效地抑制干扰,显著地改善系统的动态性能。  相似文献   

11.
建立含超导磁储能装置(SMES)的单机无穷大系统的Phillips-Heffron模型,导出含SMES电力系统总的电磁转矩表达式,从理论上分析SMES对增强系统阻尼的作用.并设计了SMES非线性比例积分微分控制器,数字仿真结果验证了SMES阻尼系统功率振荡的特性,同时表明该控制器具有较好的鲁棒性.  相似文献   

12.
根据超导储能装置(SMES)的工作原理,结合其结构特点与电路拓扑的发展趋势,建立了电压源型SMES相量模型。该模型将SMES等效为三相可控电流源,实现有功电流和无功电流独立控制,模拟SMES的功率响应特性,在功能上实现了对系统功率需求的准确跟踪,快速补偿系统的不平衡功率。最后,通过一个算例验证了SMES抑制单机无穷大系统功率振荡的效果,仿真结果表明该电压源型SMES可有效抑制系统的功率振荡,并使系统迅速恢复稳定运行状态,从而大大提高了系统的稳定性。  相似文献   

13.
SMES及其在电力系统中的应用   总被引:1,自引:0,他引:1  
SMES(超导蓄能)是一种高效、快速的蓄能装置,在电力系统中具有广泛的应用前景。全面总结了SMES在电力系统中的作用,分析了SMES在使用中的局限性,提出了SMES今后的研究方向。从已有的SMES工程实践来看,SMES在电力系统中能起到很大作用,但受制造工艺水平的限制,目前只有小型SMES能完全用于电力工业,大型SMESR 实用化还有赖于超导技术的进步。  相似文献   

14.
应用超导储能系统(SMES) 对提高风电场的暂态稳定性进行了研究。在深入研究超导储能系统运行原理的基础上,建立了基于电压型换流器(VSC)的超导储能系统模型,实现了有功功率和无功功率的解耦控制,并提出了有功、无功功率综合控制策略。利用PSCAD/EMTDC软件进行了仿真计算,结果说明超导储能系统不但能够在风速波动时平滑风电场的功率输出,而且能够提高风电系统的暂态稳定性。  相似文献   

15.
超导储能装置(Superconducting Magnetic Energy Storage devices,SMEs)现已在电力系统中获得了越来越多的应用。通过对超导储能装置的原理,发展及应用情况进行了较详细的介绍,引入了PSS/E大型电力系统仿真软件中的SMES有功及无功模型。并且在四机两区域系统上进行了仿真研究,分析了储能装置在系统故障时的有功及无功补偿作用,验证了超导储能装置在改善电力系统暂态稳定性,抑制系统振荡方面的效果。  相似文献   

16.
超导储能装置的非线性鲁棒控制器设计   总被引:19,自引:4,他引:15  
首先讨论了超导储能装置(SMES)建模问题,根据SMES样机实验结果,构造了SMES的二阶鲁棒模型;然后在单机无穷大系统中,得到了含SMES的电力系统非线性鲁棒模型。进一步,基于反馈线性化方法将系统线性化,再利用线性H理论求得SMES的鲁棒控制规律。最后,用数字仿真检验控制规律的有效性。结果表明在各种工况下,SMES的非线性鲁棒控制器均可使系统在受到大干扰后迅速恢复正常运行,并显著提高系统的暂态稳定极限,从而提高系统的输电能力。  相似文献   

17.
This paper presents application of fuzzy logic controlled superconducting magnetic energy storage device, SMES to damp the frequency oscillations of interconnected two-area power systems due to load excursions. The system frequency oscillations appear due to load disturbance. To stabilize the system frequency oscillations, the active power can be controlled via superconducting magnetic energy storage device, SMES. The error in the area control and its rate of change is used as controller input signals to the proposed fuzzy logic controller. In order to judge the effect of the proposed fuzzy logic controlled SMES, a comparative study is made between its effect and the effect of the conventional proportional plus integral (PI) controlled SMES. The studied system consists of two-area (thermal–thermal) power system each one equipped with SMES unit. The time simulation results indicate the superiority of the proposed fuzzy logic controlled SMES over the conventional PI SMES in damping the system oscillations and reach quickly to zero frequency deviation. The system is modeled and solved by using MATLAB software.  相似文献   

18.
High temperature Superconducting Magnetic Energy Storage(SMES) systems can exchange energy with substantial renewable power grids in a small period of time with very high efficiency. Because of this distinctive feature, they store the abundant wind power when the power network is congested and release the energy back to the system when there is no congestion. However, considering the cost and lifespan of SMES systems, there is an urgent demand to conduct a cost-benefit analysis to justify its role in smart grid development. This study explores the application and performs economic analysis of a 5 MJ SMES in a practical renewable power system in China based on the PSCAD/EMTDC software. An optimal location of SMES in Zhangbei wind farm is presented using real power transmission parameters. The stabilities of the renewable power grid with and without SMES are discussed. In addition, a financial feasibility study is conducted by comparing the cost and the savings from wind power curtailment of deploying SMES and battery. The economic analysis tries to find the balance between SMES investment cost and wind farm operation cost by using real data over a calendar year. The technical analysis can help guide the optimal allocation of SMES for compensating power system instability with substantial wind power. Further, the economic analysis provides a useful indication of its practical application feasibility to fight the balance between cost and benefit.  相似文献   

19.
Electric power demand has increased rapidly and this is expected to continue. Undamped power swings with low frequency tend to occur in large power systems with complex configuration. Therefore, several stabilizing control schemes, e.g., a power system stabilizer (PSS), have already been investigated. On the other hand, superconducting magnetic energy storage (SMES) is expected to be an effective apparatus in power systems since any SMES located in power systems is capable of leveling load demand, compensating for load changes, maintaining bus voltages and stabilizing power swings. The effectiveness of each function, however, depends upon the location of the SMES in the power system because output power from the SMES is distributed according to the impedance ratio of the transmission line at the SMES location. Therefore, it is difficult for SMES to serve two different purposes simultaneously. This paper proposes a combination of SMES with a high-speed phase shifter (HSPS). The HSPS, which consists of a phase shift transformer and a set of power converters, is capable of controlling the power flow of the transmission line by adjusting the phase angle of a phase shift transformer. Therefore, it is expected that the combination of SMES and HSPS can realize a highly effective controller independent of its location. Numerical examples demonstrate that the proposed apparatus located far from a generator in a long distance bulk power transmission system is capable of stabilizing the power swing as effectively as the SMES located at a generator terminal. In addition, the effectiveness of both load change compensation and power system stabilization is confirmed numerically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号