首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
齿隙非线性输入系统的迭代学习控制   总被引:3,自引:1,他引:2  
朱胜  孙明轩  何熊熊 《自动化学报》2011,37(8):1014-1017
针对一类具有输入齿隙特性的非线性系统, 提出一种实现有限作业区间轨迹跟踪的迭代学习控制方法. 在系统不确定项可参数化的情形下, 基于类Lyapunov方法设计迭代学习控制器, 回避了常规迭代学习控制中受控系统非线性特性需满足全局Lipschitz连续条件的要求. 对未知时变参数进行泰勒级数展开, 参数估计采用微分学习律, 并在控制器设计中, 采用双曲函数处理级数展开后的余项以及齿隙特性里的有界误差项, 以保证控制器可导, 且可抑制颤振. 引入一级数收敛序列确保系统输出完全跟踪期望轨迹, 且闭环系统所有信号有界.  相似文献   

2.
赵建堂 《测控技术》2020,39(7):117-121
为实现非线性系统输出对期望轨迹的有限时间内精确跟踪,提出一种有限时间鲁棒控制算法。通过设计一种无到达过程的时变终端滑模面,在保证有限时间收敛的基础上,消除了传统滑模控制中固有的稳态误差,实现系统输出对期望轨迹的精确跟踪。设计了自适应更新律补偿由参数摄动导致的系统扰动,增强系统对内部未知参数摄动的鲁棒性。对比仿真结果表明:时变终端滑模控制比线性滑模控制的轨迹跟踪时间快41.5%;线性滑模控制器下的轨迹跟踪稳态误差为0.005,时变滑模控制器使轨迹跟踪的稳态误差降为0,实现精确跟踪。  相似文献   

3.
任意初值非线性不确定系统的迭代学习控制   总被引:1,自引:0,他引:1  
为解决任意初态下的轨迹跟踪问题, 针对一类含参数和非参数不确定性的非线性系统, 提出基于滤波误差初始修正的自适应迭代学习控制方法. 利用修正滤波误差信号设计学习控制器, 并以Lyapunov方法进行收敛性能分析. 依据类Lipschitz条件处理非参数不确定性, 对于处理过程中出现的未知时变参数向量, 利用自适应迭代学习机制进行估计. 经过足够多次迭代后, 藉由修正滤波误差在整个作业区间收敛于零, 实现滤波误差本身在预设的作业区间也收敛于零. 仿真结果表明了本文所提控制方法的有效性.  相似文献   

4.
对一类二阶严格反馈时变非线性系统的自适应迭代学习控制问题进行了研究.系统中含有非周期时变参数化不确定性且控制方向未知.首先,提出了一种神经网络估计器,实现了对未知非周期时变非线性函数的逼近.随后,用Nussbaum函数对未知控制方向进行了自适应估计,并综合应用baCkstcpping技术和自适应迭代学习控制技术设计了控制器.所设计的控制器能保证系统所有状态量在Lpe-范数意义下有界,且系统的输出量在LT2-范数意义下收敛到期望轨迹.最后的仿真研究证明了控制器设计方法的有效性.  相似文献   

5.
非线性参数化系统自适应迭代学习控制   总被引:3,自引:1,他引:2  
研究一类含有未知时变参数的非线性参数化系统的学习控制问题.利用参数分离技术和信号置换思想,通过置换系统方程,合并所有时变参数为一个未知时变参数,用迭代自适应方法估计该未知参数,设计了一种自适应迭代学习控制方法,使得跟踪误差的平方在一个有限区间上的积分渐近收敛于零.通过构造一个类Lyapunov函数,给出了跟踪误差收敛和所有闭环系统信号有界的一个充分条件.仿真结果验证了该方法的有效性.  相似文献   

6.
为解决迭代学习过程中的任意迭代初值和迭代收敛理论证明难的问题,本文构造了一种轨迹跟踪误差初值恒位于滑模面内的时变终端滑模面,将轨迹跟踪误差初值不为零的轨迹跟踪控制问题转换为滑模面初值恒为零的滑模面跟踪控制问题,建立了任意迭代初值与相同迭代初值的迭代学习控制理论连接桥梁.本文提出一种基于时变滑模面的比例–积分–微分(PID)型闭环迭代学习控制策略,基于压缩映射原理证明了迭代学习的收敛性,给出了迭代收敛条件.时变终端滑模面经有限次迭代学习收敛到零,达到轨迹跟踪误差最终稳定在时变滑模面内的目的;Lyapunov稳定理论证明了位于滑模面内的轨迹跟踪误差在有限时间内收敛到原点,达到轨迹局部精确跟踪目的.随机初态下的工业机器人轨迹跟踪控制数值仿真验证了本文方法的有效性和系统对外部强干扰的鲁棒性.  相似文献   

7.
具有未知死区输入非线性系统的迭代学习控制   总被引:1,自引:0,他引:1  
针对一类具有死区输入非线性系统,提出一种实现有限作业区间轨迹跟踪控制的神经网络迭代学习算法.基于Lyapunov-like方法设计学习控制器,回避了常规迭代学习控制中受控系统非线性特性需满足全局Lipschitz连续条件的要求.为处理输入死区,利用神经网络逼近这种强非线性特性;同时,通过对神经网络逼近误差界的估计并在控制器中设置补偿作用以消除其影响,从而提高系统的跟踪性能.  相似文献   

8.
对于具有重复运动性质的对象,迭代学习控制是一种有效的控制方法.针对一类 离散非线性时变系统在有限时域上的精确轨迹跟踪问题,提出了一种开闭环PI型迭代学习 控制律.这种迭代律同时利用系统当前的跟踪误差和前次迭代控制的跟踪误差修正控制作 用.给出了所提出的学习控制律收敛的充分必要条件,并采用归纳法进行了证明.最后用仿真 结果对收敛条件进行了验证.  相似文献   

9.
非参数不确定系统的有限时间迭代学习控制   总被引:1,自引:0,他引:1  
针对任意初态情形,引入初始修正作用,研究一类非参数不确定时变系统能够达到实际完全跟踪性能的迭代学习控制方法. 采用Lyapunov-like综合,设计迭代学习控制器处理不确定性时变系统非参数化问题,其中含有有限时间控制作用,以实现在预先指定区间上的零误差跟踪. 并且,运用完全限幅学习机制,保证闭环系统中各变量的一致有界性以及跟踪误差的一致收敛性. 仿真结果表明了所提出控制方法的有效性.  相似文献   

10.
未知时变时滞非线性参数化系统自适应迭代学习控制   总被引:4,自引:3,他引:1  
针对含有未知时变参数和时变时滞的非线性参数化系统,提出了一种新的自适应迭代学习控制方法.该方法将参数分离技术与信号置换思想相结合,可以处理含有时变参数和时滞相关不确定性的非线性系统.设计了一种自适应控制策略,使跟踪误差的平方在一个有限区间上的积分渐近收敛于零.通过构造Lyapunov-Krasovskii型复合能量函数,给出了闭环系统收敛的一个充分条件.给出两个仿真例子验证了控制方法的有效性.  相似文献   

11.
基于S类函数的严格反馈非线性周期系统的自适应控制   总被引:3,自引:1,他引:2  
朱胜  孙明轩  何熊熊 《自动化学报》2010,36(8):1137-1143
针对一类严格反馈非线性周期系统, 在周期非线性可时变参数化的条件下设计自适应控制器. 通过将周期时变参数展开成傅里叶级数, 并采用微分自适应律估计未知系数, 进行控制器反推设计. 引入S类函数, 并在控制器设计中应用S类函数处理截断误差项对系统跟踪性能的影响, 同时, S类函数能确保虚拟控制的可微. 给出几种不同的S类函数设计, 分析比较将其应用于控制器设计时产生的不同效果. 理论分析与仿真结果表明, 提出的控制方法能够实现系统输出跟踪期望轨迹, 且闭环系统所有信号有界.  相似文献   

12.
带有干扰的线性时变系统的非线性鲁棒控制   总被引:1,自引:0,他引:1  
研究了含有未知时变参数和有界干扰的单输入单输出线性时变系统的鲁棒控制问题.系统时变参数只要求光滑有界而不限制为慢时变或参数上界已知.利用时变的状态变换得到新的动态系统,基于Backstepping方法,设计出一种非线性鲁棒控制器.通过适当选择控制器参数,可以保证闭环系统是全局渐近稳定的.仿真例子表明了算法的有效性.  相似文献   

13.
Bin Zhou  Zongli Lin  Guang-Ren Duan 《Automatica》2012,48(10):2387-2399
In this paper we study the problem of stabilizing a linear system with a single long time-varying delay in the input. Under the assumption that the open-loop system is stabilizable and not exponentially unstable, a finite dimensional static time-varying linear state feedback controller is obtained by truncating the predictor based controller and by adopting the parametric Lyapunov equation based controller design approach. As long as the time-varying delay is exactly known and bounded, an explicit condition is provided to guarantee the stability of the closed-loop system. It is also shown that the proposed controller achieves semi-global stabilization of the system if its actuator is subject to either magnitude saturation or energy constraints. Numerical examples show the effectiveness of the proposed approach.  相似文献   

14.
有限时间死区修正迭代学习控制器的设计   总被引:2,自引:1,他引:1  
在任意初始定位条件下,讨论具有限时间死区修正的迭代学习控制器设计方法.针对一类高阶不确定非线性时变系统,通过将其不确定性项线性参数化表达,进行迭代学习控制器设计:并考虑不确定项界函数参数化情形下的鲁棒迭代学习控制方法.通过引入有限时间死区,设计的控制器可使得所定义的误差函数在有限时间内收敛至零;进而依据能控格莱姆矩阵构造的初始修正项可使得系统在预先指定的时间区间上实现完全龈踪.理论分析及数值仿真结果表明,在保证误差函数始终囿于所设计的有限时间死区内的同时,闭环系统中所有信号均有界.  相似文献   

15.
This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control (AILC) scheme is presented for a class of commensurate high-order uncertain nonlinear fractional order systems in the presence of disturbance. To facilitate the controller design, a sliding mode surface of tracking errors is designed by using sufficient conditions of linear fractional order systems. To relax the assumption of the identical initial condition in iterative learning control (ILC), a new boundary layer function is proposed by employing Mittag-Leffler function. The uncertainty in the system is compensated for by utilizing radial basis function neural network. Fractional order differential type updating laws and difference type learning law are designed to estimate unknown constant parameters and time-varying parameter, respectively. The hyperbolic tangent function and a convergent series sequence are used to design robust control term for neural network approximation error and bounded disturbance, simultaneously guaranteeing the learning convergence along iteration. The system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapnov-like composite energy function (CEF) containing new integral type Lyapunov function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.   相似文献   

16.
针对一类输入饱和不确定Brunovsky标准型非线性时滞系统,提出一种周期自适应跟踪补偿学习算法. 利用信号置换思想重组系统,基于最小公倍周期函数变换,将时滞时变项和不确定项合并为辅助参数,进而设计周期自适应学习律估计该辅助量,并利用饱和补偿器逼近和补偿超出饱和限的部分,由此构成综合控制器,以保证系统状态对有界期望值的跟踪,解决了饱和输入周期系统的重复迭代学习控制问题. 最后通过构造Lyapunov-Krasovskii复合能量函数的差分,计算证明了系统跟踪误差的收敛性和闭环信号值的有界性. 常见耦合非线性机械臂系统的力矩控制仿真,进一步验证了该算法的有效性.  相似文献   

17.
In this paper, an iterative learning control strategy is presented for a class of nonlinear time-varying systems, the timevarying parameters are expanded into Fourier series with bounded remainder term. The backstepping design technique is used to deal with system dynamics with non-global Lipschitz nonlinearities and the approach proposed in this paper solves the non-uniform trajectory tracking problem. Based on the Lyapunov-like synthesis, the proposed method shows that all signals in the closed-loop system remain bounded over a pre-specified time interval [0, T ]. And perfect non-uniform trajectory tracking of the system output is completed. A typical series is introduced in order to deal with the unknown bound of remainder term. Finally, a simulation example shows the feasibility and effectiveness of the approach.  相似文献   

18.
This paper investigates the global output-feedback stabilization for a class of uncertain time-varying nonlinear systems. The remarkable structure of the systems is the presence of uncertain control coefficients and unmeasured states dependent growth whose rate is inherently time-varying and of unknown polynomial-of-output, and consequently the systems have heavy nonlinearities, serious uncertainties/unknowns and serious time-variations. This forces us to explore a time-varying plus adaptive methodology to realize the task of output-feedback stabilization, rather than a purely adaptive one. Detailedly, based on a time-varying observer and transformation, an output-feedback controller is designed by skillfully combining adaptive technique, time-varying technique and well-known backstepping method. It is shown that, with the appropriate choice of the design parameters/functions, all the signals of the closed-loop system are bounded, and furthermore, the original system states globally converge to zero. It is worth mentioning that, the heavy nonlinearities are compensated by an updating law, while the serious unknowns and time-variations are compensated by a time-varying function. The designed controller is still valid when the system has an additive input disturbance which, essentially different from those studied previously, may not be periodic or bounded by any known constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号