首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
研究线性不确定系统基于输出反馈的鲁棒容错控制问题.基于连续型执行器故障模式,利用线性矩阵不等式LMI,给出了系统基于输出反馈的鲁棒容错D-稳定的充分条件,并把控制器的设计方法归结为求解一族线性矩阵不等式组.与常规的方法相比,给出的控制器不仅保证闭环系统对执行器故障具有完整性,并且使闭环系统的极点配置在指定区域D中.通过仿真示例表明,无论执行器发生故障与否,得到的基于输出反馈的鲁棒容错控制器均保证闭环系统是D-稳定的,从而验证了所提出设计方法的有效性.  相似文献   

2.
一类不确定线性系统圆盘极点鲁棒可靠配置   总被引:1,自引:1,他引:0  
针对一类不确定线性系统,基于线性矩阵不等式(LMI),给出状态反馈鲁棒控制器的设计算法。利用比离散故障模型更具有实际意义的连续故障模型,给出确定状态反馈鲁棒可靠控制器存在的充分条件,通过求解LMI,确定鲁棒可靠控制器的参数矩阵。所给出的鲁棒可靠控制器,不仅可以保持不确定闭环系统的极点保持在圆盘内,而且能够抵御执行器故障对圆盘极点的影响。一个数值例子说明所给出方法的有效性及可行性。  相似文献   

3.
不确定广义大系统分散鲁棒H∞保性能控制   总被引:2,自引:1,他引:1  
针对一类状态矩阵和控制矩阵存在参数不确定的广义大系统,研究其分散鲁棒H∞保性能控制问题,系统中不确定项具有数值界,可不满足匹配条件.基于广义系统的有界实引理,应用线性矩阵不等式(LMI)方法,给出了不确定广义大系统存在分散鲁棒H∞保件能控制器的一个LMI条件,并用这个线性矩阵不等式系统的可行解提供了一组分散鲁棒H∞保性能控制律的参数化表示,最后用例子说明该方法的应用.  相似文献   

4.
传感器失效不确定时滞系统指数稳定可靠控制   总被引:1,自引:0,他引:1  
针对一类含有时变时滞的不确定参数线性系统,研究了在传感器发生故障情况下系统指数稳定鲁棒可靠控制器设计问题。系统中的参数不确定性满足广义匹配条件,时变时滞及其变化率有界,并假设故障传感器元件的输出为零。经过适当的状态变换,将原系统的指数稳定鲁棒可靠控制问题转化为另一个等价系统的鲁棒可靠控制问题。根据Lyapunov稳定性理论,得到了系统存在指数稳定鲁棒可靠控制器应满足的一个矩阵不等式。为了便于数值求解,将该矩阵不等式转化为线性矩阵不等式(LMI),并给出了可靠控制器的设计方法和步骤。利用该文方法设计的指数稳定鲁棒可靠控制器能够使得时滞系统对于任意允许的不确定性以及传感器失效都具有指定衰减度的渐近稳定性。数值算例说明了所提出设计方法的有效性。  相似文献   

5.
针对一类参数不确定离散时滞广义系统,研究其鲁棒非脆弱H∞状态反馈控制器的设计问题.系统中的不确定项参数与控制器的增益变化同时具有线性分式形式的范数有界.首先,利用Lyapunov函数理论,研究该标称系统的鲁棒H∞控制问题;其次,以线性矩阵不等式(LMI)形式给出该系统的鲁棒非脆弱H∞控制器存在的充分条件及设计方法.该控...  相似文献   

6.
针对一类具有参数不确定的非线性网络化控制系统,基于T-S模糊模型建模,推证出了确保非线性网络化控制系统在传感器发生失效故障时具有鲁棒完整性的时滞依赖充分条件,并以求解矩阵不等式给出了容错控制器的设计方法.最后以一个仿真算例验证了文中所述方法的可行性和有效性.  相似文献   

7.
针对一类不确定时滞受扰系统,研究了在执行器发生故障情况下系统具有保代价的H鲁棒可靠控制器设计问题。根据Lyapunov稳定性理论,得到了系统存在保代价H鲁棒可靠控制器应满足的一个矩阵不等式,进一步将这个矩阵不等式转化为线性矩阵不等式(LMI),并给出了系统状态反馈控制器的设计方法。利用论文方法设计的鲁棒可靠控制器能够使得时滞系统对于任意允许的不确定量以及一个预先指定执行器子集中任意执行器失效不仅具有鲁棒容错性,并且使系统存在保成本上界以及具有指定H∞范数的干扰抑制能力。仿真结果表明了该可靠控制器设计方法的有效性。  相似文献   

8.
谢立 《传感技术学报》2005,18(3):449-453,459
针对一类参数不确定离散时滞系统,研究了当传感器发生增益故障情况下的静态输出反馈保成本可靠控制器设计问题.系统中的参数不确定性满足广义匹配条件,传感器元件具有部分输出增益故障.根据Lyapunov稳定性理论和线性矩阵不等式(LMI)方法,分别给出了含有时滞记忆和无时滞静态输出反馈保成本鲁棒可靠控制律的存在条件.通过求解由一组线性矩阵不等式所表示的凸优化问题可以得到使得闭环保成本上界最小的鲁棒可靠控制器.最后通过仿真示例说明所提出方法的正确性.  相似文献   

9.
执行器失效不确定时滞系统的指定衰减度鲁棒可靠控制   总被引:8,自引:0,他引:8  
谢立 《传感技术学报》2005,18(3):460-465
针对一类含有时变时滞的不确定参数线性系统,研究了在执行器发生故障情况下的鲁棒可靠控制器设计问题.系统中的参数不确定性满足广义匹配条件,时变时滞的大小及其变化率有界,并假设故障执行器元件的输出为零.经过适当的模型变换,将原系统的鲁棒指数镇定问题转化为另一个等价系统的鲁棒镇定问题.根据Lyapunov稳定性理论和线性矩阵不等式(LMI)方法,分别给出了鲁棒可靠控制器存在的时滞无关和时滞相关充分条件.仿真结果表明了该控制器设计方法的有效性.  相似文献   

10.
耿志勇 《自动化学报》2007,33(4):422-425
研究了积分二次约束下不确定系统的鲁棒控制器设计问题. 通过将控制器的Youla参数化方法与鲁棒稳定性频域判据相结合, 将鲁棒控制器设计问题转化为RH∞空间的凸可行性问题, 进而将该问题转化为求解频域线性矩阵不等式的可行解问题. 在此基础上, 利用有理函数矩阵边界插值方法求得鲁棒控制器.  相似文献   

11.
This work investigates the problem of robust output feedback H/sub /spl infin// control for a class of uncertain discrete-time fuzzy systems with time delays. The state-space Takagi-Sugeno fuzzy model with time delays and norm-bounded parameter uncertainties is adopted. The purpose is the design of a full-order fuzzy dynamic output feedback controller which ensures the robust asymptotic stability of the closed-loop system and guarantees an H/sub /spl infin// norm bound constraint on disturbance attenuation for all admissible uncertainties. In terms of linear matrix inequalities (LMIs), a sufficient condition for the solvability of this problem is presented. Explicit expressions of a desired output feedback controller are proposed when the given LMIs are feasible. The effectiveness and the applicability of the proposed design approach are demonstrated by applying this to the problem of robust H/sub /spl infin// control for a class of uncertain nonlinear discrete delay systems.  相似文献   

12.
运用线性矩阵不等式方法,研究一类基于输出反馈的线性连续时间范数有界参数不确定系统的鲁棒预测控制问题.基于变量变换的思想,将无限时域“最小—最大”优化问题转化为线性规划问题,得出分段连续的输出反馈控制律,并给出了控制律存在的充分条件,证明了优化问题在初始时刻的可行解保证闭环系统渐近稳定.仿真实例验证了此方法的有效性.  相似文献   

13.
不确定状态滞后系统时滞相关鲁棒H∞控制   总被引:16,自引:1,他引:15  
研究了不确定状态滞后系统的鲁棒H∞控制问题,假定参数不确定性时变未知但有 界.基于LMI方法,提出了一种新的鲁棒无记忆状态反馈H∞,控制器的设计方法,得出的结 论与时滞大小有关,相对于时滞无关的结论具有较少的保守性.  相似文献   

14.
In this article, committed to extending the robust integral of the sign of the error (RISE) feedback control to the working condition of output feedback, a novel output feedback controller with a continuously bounded control input which combines the adaptive control and integral robust feedback will be proposed for trajectory tracking of a family of nonlinear systems subject to modeling uncertainties. A novel adaptive state observer (ASO) with disturbance rejection performance is creatively constructed to derive real-time estimation of the unmeasured state signals. Moreover, a projection-type adaption law is integrated to handle parameter uncertainties and an integral robust term is employed to deal with external disturbances. It is shown that asymptotic estimation performance and meanwhile asymptotic tracking result can eventually be derived. Simulation validations are implemented to demonstrate the high tracking performance of the presented controller. Notably, the synthesized control algorithm can be readily extended to the Euler–Lagrange systems. Typically, it can be extended to practical electromechanical equipment such as three-dimensional vector forming robots to improve the real-time forming accuracy.  相似文献   

15.
In this paper, robust adaptive output feedback control is studied for a class of discrete‐time nonlinear systems with functional nonlinear uncertainties of the Lipschitz type and unknown control directions. In order to construct an output feedback control, the system is transformed into the form of a nonlinear autoregressive moving average with eXogenous inputs (NARMAX) model. In order to avoid the noncausal problem in the control design, future output prediction laws and parameter update laws with the dead‐zone technique are constructed on the basis of the NARMAX model. With the employment of the predicted future outputs, a constructive output feedback adaptive control is proposed, where the discrete Nussbaum gain technique and the dead‐zone technique are used in parameter update laws. The effect of the functional nonlinear uncertainties is compensated for, such that an asymptotic tracking performance is achieved, whereas other signals in the closed‐loop systems are guaranteed to be bounded. Simulation studies are performed to demonstrate the effectiveness of the proposed approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
This paper studies the robust output tracking problem of feedback linearizable non-linear control systems with uncertainties. Utilizing the input-output feedback linearization technique and the Lyapunov method for non-linear state feedback synthesis, a robust globally exponential output tracking controller design methodology for a broad class of non-linear control systems with uncertainties is developed. The underlying theoretical approaches are the differential geometry approach and the composite Lyapunov approach. One utilizes the parametrized coordinate transformation to transform the original non-linear system with uncertainties into a singularly perturbed model with uncertainties and the composite Lyapunov approach is then applied for output tracking. To demonstrate the practical applicability, the paper has investigated a pendulum control system.  相似文献   

17.
时滞相关型离散时变时滞奇异系统的鲁棒镇定   总被引:1,自引:0,他引:1  
讨论含参数不确定的离散时变时滞奇异系统的时滞相关的鲁棒状态反馈稳定化问题. 在一系列等价变换下, 阐述了其和一个不确定正常线性离散时变时滞系统的鲁棒状态反馈稳定化问题的等价关系;利用矩阵不等式方法, 给出一个对所有容许的不确定, 使得闭环系统正则、因果且稳定的时滞相关鲁棒状态反馈稳定化控制器存在的充分条件以及无记忆状态反馈控制器的一个解.  相似文献   

18.
Input shaping provides an effective method for suppressing residual vibration of flexible structure systems. However, robustness is not possible without a time penalty. In this paper, a robust input shaping method is developed for suppressing residual vibration of multi-mode flexible structure systems with parameter uncertainties and external disturbances. The proposed scheme integrates both input shaping control and sliding mode output feedback control. The input shaper is designed for the reference model and implemented outside of the feedback loop to reduce the residual vibration. In the feedback loop, the SMOFC technique is employed to make the closed-loop system behave like the reference model with input shaper, where the residual vibration is suppressed. The selection of switching surface and the existence of sliding mode have been addressed. The knowledge of upper bound of uncertainties is not required. Furthermore, it is shown that increasing the robustness to parameter uncertainties does not lengthen the duration of the impulse sequence. Simulation results demonstrate the efficacy of the proposed control scheme.  相似文献   

19.
Shengyuan  Tongwen   《Automatica》2004,40(12):2091-2098
This paper deals with the problem of H output feedback control for uncertain stochastic systems with time-varying delays. The parameter uncertainties are assumed to be time-varying norm-bounded. The aim is the design of a full-order dynamic output feedback controller ensuring robust exponential mean-square stability and a prescribed H performance level for the resulting closed-loop system, irrespective of the uncertainties. A sufficient condition for the existence of such an output feedback controller is obtained and the expression of desired controllers is given.  相似文献   

20.
A robust dynamic output feedback controller synthesis algorithm considering H/H2 performance and regional pole placement is addressed for a nonlinear system with parameter uncertainties and external disturbance. First, the formulation of a gain‐scheduled mixed‐objective robust dynamic output feedback controller for continuous‐time polytopic linear parameter varying (LPV) systems is presented. To reduce conservativeness, some auxiliary slack variables and parameter‐dependent Lyapunov functions are employed in addition to well‐established performance conditions. Then, sufficient conditions for the desired gain‐scheduled mixed‐objective robust dynamic output feedback controllers are cast into an efficiently tractable finite‐dimensional convex optimization problem in terms of linear matrix inequalities (LMIs). Finally, numerical simulation shows the validity of the proposed controller, which has good stability, strong robustness, satisfied disturbance attenuation ability, and smooth dynamic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号