首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
《微型机与应用》2019,(6):76-82
针对高频信号采集有着高采样率高精度的要求,提出了一种双通道5 GS/s高速数据采集卡的设计方案。采集卡使用两片10位5 GS/s的ADC进行双通道采样,采用两片FPGA作为数据采集子板和数据处理母板的控制核心,并利用DDR3存储器及千兆以太网实现数据的存储上传功能。重点研究了基于低抖动高速时钟的ADC高速采样的硬件设计和ADC输出高速数字信号的接收缓存FPGA逻辑。最后对采集卡进行了性能测试,测试结果表明在双通道5 GS/s模式下,两片ADC的静态性能与动态性能良好,有效位达到8. 0以上。  相似文献   

2.
在一些数据采集领域,需要对信号进行高速率采样,但是单芯片难于满足要求。本设计采用三路ADC交叉采样方式,结合采样时钟等相位差设计、采样误差校正、高速数据处理措施,通过对被采样信号和还原信号的对比,验证了本设计的正确性。本设计最高采样速率可达195MHz。  相似文献   

3.
对高速数据采集系统进行了研究,基于其采集速率的问题,提出了一种基于FPGA的高速数据采集系统。利用FPGA实现对12bit的A/D转换器ADC12D800的控制,使用其1.6Gsps双沿采样工作模式完成对400MHz以下高频信号的数据采集。通过设计数据存储方式来降低数据传输速率,使数据经USB传至PC机来实现高频信号地实时采集与存储。实验结果表明它可以实时、高效地完成数据采集,可以应用到雷达、通信、电子对抗等领域。  相似文献   

4.
基于FPGA的DMA方式高速数据采集系统设计   总被引:7,自引:0,他引:7  
何琼  陈铁  程鑫 《电子技术应用》2011,37(12):40-43
提出了一种基于FPGA的DMA方式高速数据采集系统设计方案.该方案由底层控制器提供精确采样时序,保证ADC器件的采样吞吐;采用支持PCI协议的DMA方式的数据采集机制,优化数据采集存储及向上位机交互方式,以确保采集数据的高实时性.该方案具有良好的移植性,可应用于采样速率高、数据采集量大、数据实时性要求高的数据采集系统.  相似文献   

5.
基于FPGA的高速时间交替采样系统   总被引:3,自引:3,他引:0  
提出了一种高速高精度数据采集系统的设计。ADC高速采样基于时间交替采样结构实现,以FPGA为逻辑控制芯片,DSP为误差矫正算法处理中心。在对系统总体设计各模块进行介绍的基础上,重点分析了系统存在的偏移误差、时延误差和增益误差,并描述了一种误差矫正方法。通过实验测试,结果表明该设计能够实现1 GS/s的高速采样,并能完成明显的误差矫正。  相似文献   

6.
在手持式存储示波表的设计中,以ARM实现高速数据处理和系统控制,以大规模FPGA为数字电路载体,利用MC12429为数据采集的可编程频率时钟源,通过ADC9288实现一个100M模拟带宽的示波表数据的高速采集,研制的样机表明该设计是行之有效的.文中介绍了数据采集结构设计,重点给出MC12429的转换控制、数据采样设计及实验结果.  相似文献   

7.
在手持式存储示波表的设计中,以ARM实现高速数据处理和系统控制,以大规模FPGA为数字电路载体,利用MC12429为数据采集的可编程频率时钟源,通过ADC9288实现一个100M模拟带宽的示波表数据的高速采集,研制的样机表明该设计是行之有效的。文中介绍了数据采集结构设计,重点给出MC12429的转换控制、数据采样设计及实验结果。  相似文献   

8.
传统的信号采样率为Nyquist采样,采样频率大于信号的两倍。是最近十几年信号的带宽和最高频率都有了比较大的变化,这样一来就要求采样速率和处理速度要更高,高速ADC不仅价格昂贵,同时,采样精度也相对较低,对于超宽带信号,例如雷达信号,达到几十吉甚至上百吉,已经完全超过了现有ADC的能力。怎样才能用低速采集高速信号呢,就是压缩采样。压缩采样首先将信号进行随机解调,对信号与随机序列进行混频,本文基于随机序列控制的高速压控开关,设计一个RC无源混频电路,并进行频域分析。  相似文献   

9.
在一些数据采集领域,需要对信号进行高速率采样,但是单芯片难于满足要求。本设计采用三路AD C 交叉采样 方式,结合采样时钟等相位差设计、采样误差校正、高速数据处理措施。  相似文献   

10.
《微型机与应用》2019,(5):71-75
设计了一种200 MS/s、16 bit的模数转换(Analog to Digital Converter,ADC)数据采集卡,采集卡使用了ADC芯片AD9467对模拟信号进行采样,并以FPGA作为数据传输控制单元,采用DDR3进行数据存储,数据写速度达到了68. 3Gb/s。数据通过千兆以太网传输至计算机,数据传输速率最高达782 Mb/s,满足高速采样和数据传输要求。对数据采集卡的动态性能进行了测试,测试结果表明采样系统在其带宽内的有效位在12. 1~12. 6的范围内,设计满足采集卡的性能要求。  相似文献   

11.
杜凌云  黄士坦 《微机发展》2007,17(4):167-170
由于数字信号处理的种种优点,现在多数时候是将模拟信号转换成数字信号再进行处理。在雷达系统中往往产生高频信号,要对这类信号进行数字处理,根据恩奎斯特采样定律,要求A/D采样率高达Gsps量级。对此例高频信号进行采样的系统,就是所谓的高速数据采集系统。高速数据采集具有系统数据吞吐率高的特点,要求系统在短时间内能够传输并存储采集结果。模数转换后的数据快速存储能力在一定程度上制约着A/D转换的频率和最大采集时间。故高速数据采集系统中的数据存储是一个热点和难点。文中研究讨论了一种高达1Gsps的A/D与微处理器间的数据缓存技术。  相似文献   

12.
高速实时信号采集系统是由高性能ADC、FPGA和QDRⅡSRAM等组成。其中高性能ADC实现模数转换,FPGA与QDRⅡSRAM实现ADC信号的接收、数据重组、存储和传输。重点讲述了FPGA如何接收采样率为2 GS/s的高速ADC数据并保持一定的时序裕量,并通过分析FPGA中资源占用情况可以看到FPGA在高速实时信号采集系统中具有很大的优势。  相似文献   

13.
基于PC的多通道超高速数据采集系统的设计与实现   总被引:1,自引:0,他引:1  
论述了一种基于IBM-PC机的超高速实时数字存储示波系统.采用“闪烁”A/D转换器,软件虚拟面板,高速图形环境,PC仪器设计等先进技术和思想,开发出了4通道32MSa/s实时数字存储示波系统,并投入批量生产。提出了采用“闪烁”Ape超高速数据采集和分时分片多体缓冲存储技术的设计方案,文中介绍了系统硬软件结构和主要硬件单元电路的实现,并简要说明了系统抗于扰措施。  相似文献   

14.
介绍了2Gsps采样率高速数据采集系统的构成及设计要点,通过采用ADC+FPGA的设计方法简化了系统硬件构成,实现了系统实时采集存储。该系统已应用于辐射探测脉冲信号测试中,获得了良好实验结果。  相似文献   

15.
交替采样技术是一种理想的提高采样率的方法,但所伴随的高速输出数据对存储也带来了一定的困难。本文介绍了一种基于交替采样技术的高速数据采集系统,该系统采用了两片采样率为500Msps的A/D转换器,实现了1Gsps的采样率,并利用FPGA对A/D转换器的输出数据进行转换和缓存。本文着重介绍了该数据采集系统的数据转换和数据存储,并给出了仿真波形。  相似文献   

16.
本文介绍了一种基于交替采样技术的高速数据采集系统,该系统采用了两片采样率为1GSPS的A/D实现了2GSPS的采样率,并利用FPGA对A/D输出数据的进行转换和缓存。本文着重介绍了该数据采集系统设计和高速存储所涉及到的问题,并给出了仿真波形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号