首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper addresses the model‐based event‐triggered predictive control problem for networked control systems (NCSs). Firstly, we propose a discrete event‐triggered transmission scheme on the sensor node by introducing a quadratic event‐triggering function. Then, on the basis of the aforementioned scheme, a novel class of model‐based event‐triggered predictive control algorithms on the controller node is designed for compensating for the communication delays actively and achieving the desired control performance while using less network resources. Two cases, that is, the value of the communication delay of the first event‐triggered state is less or bigger than the sampling period, are considered separately for certain NCSs, regardless of the communication delays of the subsequent event‐triggered states. The codesign problems of the controller and event‐triggering parameter for the two cases are discussed by using the linear matrix inequality approach and the (switching) Lyapunov functional method. Furthermore, we extended our results to the NCSs with systems uncertainties. Finally, a practical ball and beam system is studied numerically to demonstrate the compensation effect for the communication delays with the proposed novel model‐based event‐triggered predictive control scheme. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
With traditional open-loop scheduling of network resources, the quality-of-control (QoC) of networked control systems (NCSs) may degrade significantly in the presence of limited bandwidth and variable workload. The goal of this work is to maximize the overall QoC of NCSs through dynamically allocating available network bandwidth. Based on codesign of control and scheduling, an integrated feedback scheduler is developed to enable flexible QoC management in dynamic environments. It encompasses a cascaded feedback scheduling module for sampling period adjustment and a direct feedback scheduling module for priority modification. The inherent characteristics of priority-driven control networks make it feasible to implement the proposed feedback scheduler in real-world systems. Extensive simulations show that the proposed approach leads to significant QoC improvement over the traditional open-loop scheduling scheme under both underloaded and overloaded network conditions.  相似文献   

3.
研究具有时变采样周期和数据丢包的网络控制系统的渐近稳定和严格耗散控制问题.针对采样周期时变且在标称周期上下波动,数据丢包数有界,利用参数不确定的方法,网络控制系统建模为一类带有参数不确定的离散时滞系统.构造一个改进的李雅普诺夫-卡拉索夫斯基函数,基于线性矩阵不等式方法及Jensen不等式方法,给出系统严格(Q,S,R)-耗散的充分条件,得到控制器的设计方法.数值实例表明所提出的方法具有较小的保守性,同时也减少了计算量.  相似文献   

4.
Sampled-data control of networked linear control systems   总被引:2,自引:0,他引:2  
In this paper, the problem of synthesis and analysis for the networked control systems (NCSs) with time-driven digital controllers and event-driven holders is considered. The NCS is modelled as a sampled-data system with time-delay in its discrete-time subsystem. This model is able to capture many network-induced features, for example, time-delay and packet dropout. Moreover, the model allows different combinations of the time-driven or event-driven mode of the devices, including the samplers, the controllers and the holders. By transforming time-delay in the discrete-time subsystem into its continuous-time subsystem of the sampled-data system, we have also obtained a less conservative time-delay dependent stability result for the NCSs, using a new Lyapunov function and a relaxed condition. Some limitations of the existing literatures on network-induced time-delay and sampling period are removed in the proposed framework. Furthermore, a sampled-data control design procedure is developed for the NCSs. Linear matrix inequality approach has been employed to solve the stability and control design problems. Finally, numerical examples are included to demonstrate the effectiveness of the proposed stability result and the potential of the proposed techniques.  相似文献   

5.
This paper investigates the robust tracking control problem for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network-induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method.  相似文献   

6.
基于T-S模糊模型非线性网络控制系统改进H∞跟踪控制   总被引:1,自引:0,他引:1  
研究一类非线性网络控制系统改进H∞跟踪控制问题, 该类网络控制系统中非线性被控对象和被跟踪对象分别采用Takagi-Sugeno(T-S)模糊模型和线性稳定参考模型描述. 首先通过综合考虑网络中的数据传输时滞和数据丢包影响, 采用输入时滞法和并行分布补偿技术, 建立基于零阶保持器刷新时刻的系统状态跟踪误差模型. 然后利用改进的自由权矩阵方法, 并结合Lyapunov直接法给出系统满足H∞跟踪性能的充分条件以及模糊控制器的设计方法. 最后仿真实例表明本文方法的有效性和相比已有方法的优越性.  相似文献   

7.
This paper presents a novel impulsive system approach to input-to-state stability (ISS) analysis of networked control systems (NCSs) with time-varying sampling intervals and delays. This approach is based upon the new idea that an NCS can be viewed as an interconnected hybrid system composed of an impulsive subsystem and an input delay subsystem. A new type of time-varying discontinuous Lyapunov-Krasovskii functional, which makes full use of the information on the piecewise-constant input and the bounds of the network delays, is introduced to analyze the ISS property of NCSs. Linear matrix inequality based sufficient conditions are derived for ISS of NCSs with respect to external disturbances. When applied to the approximate tracking problem for NCSs, the derived ISS result provides bounds on the steady-state tracking error. Numerical examples are provided to show the efficiency of the proposed approach.  相似文献   

8.
In practical networked control systems (NCS), such as smart grids, cooperative robotics, and sensor networks, often multiple control applications share a communication infrastructure, requiring a smart and efficient scheduling mechanism to coordinate the access to the capacity-limited communication medium. In this article we consider the problem of event-based scheduling design for NCSs consisting of multiple control loops over a shared communication medium. We extend the notion of Try-Once-Discard (TOD), which is one of the basic deterministic event-based scheduling protocols for resource constrained NCSs, to the case of multiple stochastic control systems coupled via a shared communication medium subject to capacity limitation and stochastic packet delivery failure. Showing that the overall network-induced error is a homogeneous Markov chain in our stochastic set-up, we first study stability properties of such networked systems under the TOD scheduling scheme employing the concepts of stochastic stability. Then, we derive sufficient stability conditions under the TOD rule assuming that the communication channel is not ideal, i.e. a scheduled data packet for transmission might be lost in the communication channel with a non-zero probability. Furthermore, we derive analytic performance bounds by finding uniform upper-bounds for an average quadratic cost function. The numerical simulations are performed for variety of system parameters and NCS set-ups to strengthen our stability claim as well as illustrating performance bounds. Additionally, we show that the TOD scheduling rule outperforms the conventional time-triggered, and uniform and non-uniform random channel access arbitration mechanisms, in terms of efficient coordination of channel access in stochastic NCSs.  相似文献   

9.
具有传感器故障的网络控制系统保性能可靠控制   总被引:3,自引:1,他引:2  
基于存在时延和丢包的网络传输环境.针对具有参数不确定性的网络化控制系统,研究了其在传感器故障条件下的保性能可靠控制问题.根据Lyapunov稳定性理论和线性矩阵不等式(LMIs)方法,推导出使闭环网络控制系统在传感器故障条件下渐近稳定且保证综合性能指标满足要求的充分条件,并利用LMIs提出了保性能可靠控制率的设计方法.该控制算法在提高网络化控制系统可靠性的同时有利于系统综合体性能的优化.数值仿真验证了该方法的可行性和有效性.  相似文献   

10.
This paper provides a survey on time-delay approach to networked control systems (NCSs). The survey begins from a brief summary on fundamental network-induced issues in NCSs and the main approaches to the modelling of NCSs. In particular, a comprehensive introduction to time-delay approach to sampled-data and networked control is provided. Then, recent results on time-delay approach to event-triggered control are recalled. The survey highlights time-delay approach developed to modelling, analysis and synthesis of NCSs, under communication constraints, with a particular focus on Round-Robin, Try-once-discard and stochastic protocols. The time-delay approach allows communication delays to be larger than the sampling intervals in the presence of scheduling protocols. Moreover, some results on networked control of distributed parameter systems are surveyed. Finally, conclusions and some future research directions are briefly addressed.  相似文献   

11.
This paper discusses guaranteed cost control for multi-input and multi-output (MIMO) networked control systems (NCSs) with multi-channel packet disordering. Considering the time-varying and bounded network transmission delay, packet dropout and packet disordering, a novel model of NCSs is proposed by introducing the concept of packet displacement. It is worthwhile mentioned that this model can fully describe the dynamic characteristic of network and always guarantee the newest control input executed by the plant, which makes that the plant can be controlled in real time. The resulting closed-loop systems are jump linear systems due to the newest signals executed subject to Markovian chains. A real-time controller is designed for uncertain and certain NCSs based on Markovian theory combined with linear matrix inequality (LMI) techniques such that the closed-loop cost function value is not more than a specified upper bound that varies according to Quality of Services (QOS). Finally, numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

12.
This paper focuses on the design of H filter and event-triggered scheme for a class of continuous non-linear networked control systems (NCSs) based on fuzzy system appeared with time delays. First, we consider the discrete event-triggered (ET) scheme to make efficient utilisation of bandwidth. Under this ET-scheme, sensor releases the data only when our sampled-data plant violates the specific event-triggered condition. Second, the T-S fuzzy system is used to model the non-linear NCSs. Another purpose of this paper is to design filters involving delays. Such filters have a more general form than the delay-free filters that have been mostly considered in the traditional studies. By using the time-delay system, co-design of event-triggered scheme and H filter for the delayed NCSs is presented in a unified frame work. To choose the latest data packet and discard the dis-ordered packet logic, zero-order hold is inserted between the fuzzy filter and event generator. Then, by using the novel fuzzy Lyapunov–Krasovskii function approach with free-weighting matrix technique, H filter design of event-triggered delay NCSs is proposed. Finally, to show the effective result of our co-design method, a tunnel-diode example is given.  相似文献   

13.
A novel integrated design scheme of average dwell time scheduling strategy, dynamic bandwidth allocation policy and quantised control for a collection of networked control systems (NCSs) with time delay and communication constraints is proposed in this paper. A scheduling policy is presented to accommodate the limitation of communication capacity which depends on the convergence rate of closed-loop system and divergence rate of open-loop plant. Linear programming technique is adopted to dynamically allocate bit rate for each node and the strategy is used to make trade-offs between the network utilisation and the control performance which provides an effective way of optimising the quality of control (QoC) and the quality of service (QoS) for NCSs. Mid-tread uniform quantisers update the quantisation rules according to the assignment of the bit rate and convert the quantised state into a kind of input saturation with bounded disturbances. Taking into account the effect of dual scheduling strategy and quantisation, the NCSs are modelled as discrete-time switched systems with bounded disturbances. Furthermore, a scheduling and quantised feedback control co-design procedure is proposed for the simultaneous stabilisation of the collection of networked subsystems. Finally, a simulation example is given to illustrate the effectiveness of the proposed method.  相似文献   

14.
Networked Control Systems (NCSs) are pervasively applied in modern industry. With increasing functionalities, modern NCSs tend to have dynamic workload by holding a variety of applications via a shared network. To handle workload variations and provide performance guarantees, dynamic network scheduling scheme is highly desired in NCSs. In this paper, we propose a network scheduling scheme, referred to as DTS, that can make on-the-fly decisions to schedule the applications in NCSs. DTS aims at NCSs that use time-triggered network as shared medium and Time division multiple access (TDMA) as network access method. DTS dynamically changes the network accessing sequence of the applications in a way to provide optimal system performance and maintain control stability in NCSs. DTS adopts a decentralized schedule mechanism where each application can make its local schedule decision, enhancing the scalability of NCSs. Simulation results demonstrate the effectiveness of the proposed scheme by improving the network bandwidth and providing better system performance in NCS comparing with the existing time-triggered scheduling schemes.  相似文献   

15.
本文研究了DoS攻击下网络化控制系统记忆型事件触发预测补偿控制问题. 首先, 由于网络带宽资源有限 和系统状态不完全可观测性, 引入了记忆型事件触发函数, 为观测器提供离散事件触发传输方案. 然后, 分析了网络 传输通道上发生的DoS攻击. 结合上述记忆型事件触发方案, 在控制节点设计一类新颖的预测控制算法, 节省网络 带宽资源并主动补偿DoS攻击. 同时, 建立了基于观测器的记忆型事件触发预测控制的闭环系统, 并且分析稳定性. 通过线性矩阵不等式(LMI)和Lyapunov稳定性理论, 建立了控制器、观测器和记忆型事件触发矩阵的联合设计方案, 并验证了该方案的可行性. 仿真结果表明, 该方案结合记忆型事件触发机制可以有效补偿DoS攻击, 节约网络带宽 资源.  相似文献   

16.
This paper investigates the stabilization problem of the nonlinear networked control systems (NCSs) with drops and variable delays. The NCS is modeled as a sampled‐data system. For such a sampled‐data NCS, the stability properties are studied for delay that can be both shorter and longer than one sampling period, respectively. The exponential stability conditions are derived in terms of the parameters of the plant and time delay. On the other hand, a model‐based control scheme based on an approximate discrete‐time model of the plant is presented to guarantee the stability of the closed‐loop system subject to variable time delays and packet losses. The performance of the proposed control schemes are examined through numerical simulations of an automated rendezvous and docking of spacecraft system. Moreover, the simulations show that by employing the model‐based controller, a higher closed‐loop control performance can be achieved. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The whole performance of the networked control system (NCSs) depends on two interaction factors, namely the quality of control performance (QoP) and quality of network service (QoS). So, to optimize the whole perfor-mance of NCSs, the problem of guaranteeing QoP and QoS plays an important role in the design of NCSs. However, up to now, little work has been done in this field. In this paper, a synthesizing control model of NCSs to guarantee QoP and QoS is proposed, and a feasible condition of optimizing whole performance of NCSs is also suggested. Finally, the simulation results show that the proposed model is effective.  相似文献   

18.
提出了一种具有时延和数据包丢失的动车组网络控制系统(NCSs)建模方法。假设网络时延小于采样周期,数据包传输成功率是固定的。动车组网络控制系统可以被描述为一个事件驱动的异步动态系统,使用动态输出反馈控制方法,讨论了闭环网络控制系统的稳定性。  相似文献   

19.
本文研究了一类具有数据包丢失的网络控制系统(NCSs)的建模和保性能控制问题.通过用两个马尔可夫链分别来描述前向通道和反馈通道的丢包过程,将闭环网络控制系统建模成具有两个模式的马尔可夫随机切换系统.基于线性矩阵不等式技术和李亚普诺夫方法得到了闭环系统随机稳定的充分条件,并给出了状态反馈保性能控制器的设计方法.最后通过数值算例验证本文结果的有效性.  相似文献   

20.
This article studies the problems of H output tracking performance analysis and controller design for networked control systems (NCSs) with time delay and packet dropout. By using linear matrix inequality (LMI)-based method, H output tracking performance analysis and controller design are presented for NCSs with constant sampling period. For NCSs with time-varying sampling period, a multi-objective optimisation methodology in terms of LMIs is used to deal with H output tracking performance analysis and controller design. The designed controllers can guarantee asymptotic tracking of prescribed reference outputs while rejecting disturbances. The simulation results illustrate the effectiveness of the proposed H output tracking controller design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号