首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
基于Annotation的Spring事务应用设计   总被引:1,自引:0,他引:1  
该文简要介绍Spring的事务实现技术,讨论了Spring中的事务的两种实现方式。通过同一个案例阐述了在Spring中通过xml配置来实现事务和使用了Annotation实现事务,比较了两种实现方式的优缺点。对在Spring使用Annotation实现事务作了总结,从而体现使用Annotation实现事务简洁性和良好的扩展性。  相似文献   

2.
S盒在AES中占有至关重要的地位,在AES的硬件实现过程中,S盒的实现直接决定了它的性能和实现代价.传统实现方法是利用查表的方法,这种实现方法经综合工具处理后,利用率只有25%左右,实现性能很低.给出了高级加密标准的S盒的一种硬件实现,用纯逻辑算法实现了S盒.这种实现方法与一般的查表实现方法相比较,版图时的利用率大大提高,一般用该方法可以到达70%.  相似文献   

3.
讲解Spring的事务实现技术,讨论Spring中事务的两种实现方式。通过同一个案例阐述了在Spring中对XML配置来实现事务和使用了Annotation实现事务,比较了两种实现方式的优缺点。在Spring使用Annotation实现事务作出总结,从而体现使用Annotation实现事务简洁性和良好的扩展性。  相似文献   

4.
为了充分利用图形处理器(GPU)的闲置资源,同时达到提高密码算法加密速度的目的,提出了一种在图形处理器上实现AES加密算法的方法,分别阐述了基于传统OpenGL的AES实现以及基于最新技术CUDA的AES实现,并对这两种方法的实现性能进行了分析,同时与传统CPU方法的实现性能进行了比较,基于CUDA的AES的实现速度达到了传统CPU上AES实现速度的19.6倍.  相似文献   

5.
刘荣辉 《电脑学习》2009,(3):119-120
本文简要介绍Spring的事务实现技术,讨论了Spring中的事务的两种实现方式。通过同一个案例阐述了在Spring中通过xml配置来实现事务和使用了Annotation实现事务,比较了两种实现方式的优缺点。  相似文献   

6.
TMS320C32扩展异步串口的方法   总被引:3,自引:1,他引:2  
介绍了实现异步串行通信接口的三种方法:软件模拟实现、硬件实现、专用协议芯片实现。给出了具体实现的硬件接口和软件编程。在接口的第二种和第三种实现方法中,都使用了FPGA实现逻辑接口。  相似文献   

7.
构建基于Web Services的视频点播系统   总被引:2,自引:0,他引:2  
在分析目前网上视频点播系统缺陷的基础上,提出了利用WebServices技术实现网上视频点播的思路,并介绍了视频点播的实现原理、实现方法和实现过程;简要分析了WebServices的工作原理,利用System,IO对象模型成功地在ASP.NET中实现了视频点播功能.  相似文献   

8.
为了实现车辆的统一管理和调度,提出了针对汽车租赁用户的GPS导航控制系统的设计和实现方法.利用MSP430超低功耗单片机,给出了软硬件的具体实现,实现了导航定位和无线网络通讯,同时实现了汽车的远程控制和调度,能极大地提高汽车租赁公司的管理能力.  相似文献   

9.
介绍了TMS3 2 0VC3 3DSP实现异步串行通信接口的三种方法 :软件模拟实现、硬件实现、专用协议芯片实现。给出了具体实现的硬件接口和软件编程。在接口的第二种和第三种实现方法中 ,都使用了FPGA实现逻辑接口。  相似文献   

10.
提出了在实现层显式实现连接件的思想,并给出了一种插拔式连接件的实现方法,使连接件这个软件体系结构层概念成为一种插拔式可重用的构造,进而在实现中体现软件体系结构设计,平滑了软件体系结构层和实现层间的差距.  相似文献   

11.
In this paper we study from the numerical point of view elliptic free boundary problems in the theory of fluid flow through porous media by a new method. Research supported by C.N.R. in the frame of the collaboration between L. A. N. of Pavia and E. R. A. 215 of C. N. R. S. and of Paris University and carried out also with the cooperation of the Division C. E. T. I. S. of C.C.R. Euratom Ispra.  相似文献   

12.
As the popularity of using SMP systems as the building blocks for high performance supercomputers increases, so too increases the need for applications that can utilize the multiple levels of parallelism available in clusters of SMPs. This paper presents a dual-layer distributed algorithm, using both shared-memory and distributed-memory techniques to parallelize a very important algorithm (often called the “gold standard”) used in computational chemistry, the single and double excitation coupled cluster method with perturbative triples, i.e. CCSD(T). The algorithm is presented within the framework of the GAMESS [M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.J. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, General atomic and molecular electronic structure system, J. Comput. Chem. 14 (1993) 1347–1363]. (General Atomic and Molecular Electronic Structure System) program suite and the Distributed Data Interface [M.W. Schmidt, G.D. Fletcher, B.M. Bode, M.S. Gordon, The distributed data interface in GAMESS, Comput. Phys. Comm. 128 (2000) 190]. (DDI), however, the essential features of the algorithm (data distribution, load-balancing and communication overhead) can be applied to more general computational problems. Timing and performance data for our dual-level algorithm is presented on several large-scale clusters of SMPs.  相似文献   

13.
《Computer》1971,4(5):28-29
The Western Area Committee of the IEEE Computer Society sponsored a workshop, "Non-Logic Aspects of Logic Devices," at Asilomar Conference Grounds in Pacific Grove, California, April 19-21, 1971. Presentations were made by: Brooks Cowart; Dr. Tsai-Hwa Chen; Walter V. Vilkelis; Dr. John M. Woulbroun; Morris Knapp; Howard L. Parks; John E. Goodwin; Elliot Josephson; Dr. Orin E. Marvel; Dr. Irving T. Ho; C. W. Ho; John T. Polhemus; David Richardson; W. T. Rhoades; Dr. Frank Greene.  相似文献   

14.
An alleged counterexample in the above-titled paper (ibid., vol.35, no.4, pp.425-429, Apr. 1990) to a main result of B.D.O. Anderson and J.B. Moore (SIAM J. Contr. Optimiz., vol.19, no.1, pp.22-32, 1981) is shown not to be a counterexample in actuality  相似文献   

15.
In the current paper, a new serial algorithm for solving nearly penta-diagonal linear systems is presented. The computational cost of the algorithm is less than or almost equal to those of recent successful algorithms [J. Jia, Q. Kong, and T. Sogabe, A fast numerical algorithm for solving nearly penta-diagonal linear systems, Int. J. Comput. Math. 89 (2012), pp. 851–860; X.G. Lv and J. Le, A note on solving nearly penta-diagonal linear systems, Appl. Math. Comput. 204 (2008), pp. 707–712; S.N. Neossi Nguetchue and S. Abelman, A computational algorithm for solving nearly penta-diagonal linear systems, Appl. Math. Comput. 203 (2008), pp. 629–634]. Moreover, it is suitable for developing its parallel algorithms. One of the parallel algorithms is given and is shown to be promising. The implementation of the algorithms using Computer Algebra Systems such as MATLAB and MAPLE is straightforward. Two numerical examples are given in order to illustrate the validity and efficiency of our algorithms.  相似文献   

16.
We describe an O(n 3/log n)-time algorithm for the all-pairs-shortest-paths problem for a real-weighted directed graph with n vertices. This slightly improves a series of previous, slightly subcubic algorithms by Fredman (SIAM J. Comput. 5:49–60, 1976), Takaoka (Inform. Process. Lett. 43:195–199, 1992), Dobosiewicz (Int. J. Comput. Math. 32:49–60, 1990), Han (Inform. Process. Lett. 91:245–250, 2004), Takaoka (Proc. 10th Int. Conf. Comput. Comb., Lect. Notes Comput. Sci., vol. 3106, pp. 278–289, Springer, 2004), and Zwick (Proc. 15th Int. Sympos. Algorithms and Computation, Lect. Notes Comput. Sci., vol. 3341, pp. 921–932, Springer, 2004). The new algorithm is surprisingly simple and different from previous ones. A preliminary version of this paper appeared in Proc. 9th Workshop Algorithms Data Struct. (WADS), Lect. Notes Comput. Sci., vol. 3608, pp. 318–324, Springer, 2005.  相似文献   

17.
The paper describes the 3D infinite element for modeling of stationary harmonic electromagnetic fields in waveguides. The proposed approximation is a straightforward modification of the analogous approach developed for analysis of scattering problems in unbounded 2D and 3D domains [Comp. Meth. Appl. Mech. Engrg. 188 (2000) 625; Int. J. Num. Meth. Engrg. 57 (2003) 899]. Exponential shape functions in the longitudinal direction are used similarly as in [Comp. Meth. Appl. Mech. Engrg. 140 (1997) 221]. However, arbitrary order of approximation in the tangential direction may be selected due to compatibility with the hp-adaptive edge FE element discretization for Maxwell’s equations in bounded domains reported in [Comp. Meth. Appl. Mech. Engrg. 152 (1998) 103; Int. J. Num. Meth. Engrg. 53 (2002) 147; Comp. Meth. Appl. Mech. Engrg. 169 (1999) 331].  相似文献   

18.
Problems for various random number generators accompanying the Wolff algorithm [U. Wolff, Phys. Rev. Lett. 62 (1989) 361; U. Wolff, Phys. Lett. B 228 (1989) 379] are discussed, including the hidden errors first reported in [A.M. Ferrenberg, D.P. Landau, Y.J. Wong, Phys. Rev. Lett. 69 (1992) 3382]. A general (though simple) method of twisting and combining for improving the performance of these generators is proposed. Some recent generators motivated by such a twisting and combining method with extremely long period are discussed. The proposed method provides a novel and simple way to improve RNGs in its performance.  相似文献   

19.
A FORTRAN 77 program is presented for calculating with the given accuracy eigenvalues, eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined Sturm-Liouville problem with the parametric third type boundary conditions on the finite interval. The program calculates also potential matrix elements - integrals of the eigenfunctions multiplied by their first derivatives with respect to the parameter. Eigenvalues and matrix elements computed by the ODPEVP program can be used for solving the bound state and multi-channel scattering problems for a system of the coupled second-order ordinary differential equations with the help of the KANTBP programs [O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Commun. 177 (2007) 649-675; O. Chuluunbaatar, A.A. Gusev, S.I. Vinitsky, A.G. Abrashkevich, Comput. Phys. Commun. 179 (2008) 685-693]. As a test desk, the program is applied to the calculation of the potential matrix elements for an integrable 2D-model of three identical particles on a line with pair zero-range potentials, a 3D-model of a hydrogen atom in a homogeneous magnetic field and a hydrogen atom on a three-dimensional sphere.

Program summary

Program title: ODPEVPCatalogue identifier: AEDV_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDV_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 3001No. of bytes in distributed program, including test data, etc.: 24 195Distribution format: tar.gzProgramming language: FORTRAN 77Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IVOperating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XPRAM: depends on
1.
the number and order of finite elements;
2.
the number of points; and
3.
the number of eigenfunctions required.
Test run requires 4 MBClassification: 2.1, 2.4External routines: GAULEG [3]Nature of problem: The three-dimensional boundary problem for the elliptic partial differential equation with an axial symmetry similar to the Schrödinger equation with the Coulomb and transverse oscillator potentials is reduced to the two-dimensional one. The latter finds wide applications in modeling of photoionization and recombination of oppositively charged particles (positrons, antiprotons) in the magnet-optical trap [4], optical absorption in quantum wells [5], and channeling of likely charged particles in thin doped films [6,7] or neutral atoms and molecules in artificial waveguides or surfaces [8,9]. In the adiabatic approach [10] known in mathematics as Kantorovich method [11] the solution of the two-dimensional elliptic partial differential equation is expanded over basis functions with respect to the fast variable (for example, angular variable) and depended on the slow variable (for example, radial coordinate ) as a parameter. An averaging of the problem by such a basis leads to a system of the second-order ordinary differential equations which contain potential matrix elements and the first-derivative coupling terms (see, e.g., [12,13,14]). The purpose of this paper is to present the finite element method procedure based on the use of high-order accuracy approximations for calculating eigenvalues, eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined Sturm-Liouville problem with the parametric third type boundary conditions on the finite interval. The program developed calculates potential matrix elements - integrals of the eigenfunctions multiplied by their derivatives with respect to the parameter. These matrix elements can be used for solving the bound state and multi-channel scattering problems for a system of the coupled second-order ordinary differential equations with the help of the KANTBP programs [1,2].Solution method: The parametric self-adjoined Sturm-Liouville problem with the parametric third type boundary conditions is solved by the finite element method using high-order accuracy approximations [15]. The generalized algebraic eigenvalue problem AF=EBF with respect to a pair of unknown (E,F) arising after the replacement of the differential problem by the finite-element approximation is solved by the subspace iteration method using the SSPACE program [16]. First derivatives of the eigenfunctions with respect to the parameter which contained in potential matrix elements of the coupled system equations are obtained by solving the inhomogeneous algebraic equations. As a test desk, the program is applied to the calculation of the potential matrix elements for an integrable 2D-model of three identical particles on a line with pair zero-range potentials described in [1,17,18], a 3D-model of a hydrogen atom in a homogeneous magnetic field described in [14,19] and a hydrogen atom on a three-dimensional sphere [20].Restrictions: The computer memory requirements depend on:
1.
the number and order of finite elements;
2.
the number of points; and
3.
the number of eigenfunctions required.
Restrictions due to dimension sizes may be easily alleviated by altering PARAMETER statements (see sections below and listing for details). The user must also supply DOUBLE PRECISION functions POTCCL and POTCC1 for evaluating potential function U(ρ,z) of Eq. (1) and its first derivative with respect to parameter ρ. The user should supply DOUBLE PRECISION functions F1FUNC and F2FUNC that evaluate functions f1(z) and f2(z) of Eq. (1). The user must also supply subroutine BOUNCF for evaluating the parametric third type boundary conditions.Running time: The running time depends critically upon:
1.
the number and order of finite elements;
2.
the number of points on interval [zmin,zmax]; and
3.
the number of eigenfunctions required.
The test run which accompanies this paper took 2 s with calculation of matrix potentials on the Intel Pentium IV 2.4 GHz.References:
[1]
O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Comm. 177 (2007) 649-675
[2]
O. Chuluunbaatar, A.A. Gusev, S.I. Vinitsky, A.G. Abrashkevich, Comput. Phys. Comm. 179 (2008) 685-693.
[3]
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986.
[4]
O. Chuluunbaatar, A.A. Gusev, S.I. Vinitsky, V.L. Derbov, L.A. Melnikov, V.V. Serov, Phys. Rev. A 77 (2008) 034702-1-4.
[5]
E.M. Kazaryan, A.A. Kostanyan, H.A. Sarkisyan, Physica E 28 (2005) 423-430.
[6]
Yu.N. Demkov, J.D. Meyer, Eur. Phys. J. B 42 (2004) 361-365.
[7]
P.M. Krassovitskiy, N.Zh. Takibaev, Bull. Russian Acad. Sci. Phys. 70 (2006) 815-818.
[8]
V.S. Melezhik, J.I. Kim, P. Schmelcher, Phys. Rev. A 76 (2007) 053611-1-15.
[9]
F.M. Pen'kov, Phys. Rev. A 62 (2000) 044701-1-4.
[10]
M. Born, X. Huang, Dynamical Theory of Crystal Lattices, The Clarendon Press, Oxford, England, 1954.
[11]
L.V. Kantorovich, V.I. Krylov, Approximate Methods of Higher Analysis, Wiley, New York, 1964.
[12]
U. Fano, Colloq. Int. C.N.R.S. 273 (1977) 127;
A.F. Starace, G.L. Webster, Phys. Rev. A 19 (1979) 1629-1640.
[13]
C.V. Clark, K.T. Lu, A.F. Starace, in: H.G. Beyer, H. Kleinpoppen (eds.), Progress in Atomic Spectroscopy, Part C, Plenum, New York, 1984, pp. 247-320.
[14]
O. Chuluunbaatar, A.A. Gusev, V.L. Derbov, M.S. Kaschiev, L.A. Melnikov, V.V. Serov, S.I. Vinitsky, J. Phys. A 40 (2007) 11485-11524.
[15]
A.G. Abrashkevich, D.G. Abrashkevich, M.S. Kaschiev, I.V. Puzynin, Comput. Phys. Comm. 85 (1995) 40-64.
[16]
K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982.
[17]
O. Chuluunbaatar, A.A. Gusev, M.S. Kaschiev, V.A. Kaschieva, A. Amaya-Tapia, S.Y. Larsen, S.I. Vinitsky, J. Phys. B 39 (2006) 243-269.
[18]
Yu.A. Kuperin, P.B. Kurasov, Yu.B. Melnikov, S.P. Merkuriev, Ann. Phys. 205 (1991) 330-361.
[19]
O. Chuluunbaatar, A.A. Gusev, V.P. Gerdt, V.A. Rostovtsev, S.I. Vinitsky, A.G. Abrashkevich, M.S. Kaschiev, V.V. Serov, Comput. Phys. Comm. 178 (2008) 301-330.
[20]
A.G. Abrashkevich, M.S. Kaschiev, S.I. Vinitsky, J. Comp. Phys. 163 (2000) 328-348.
  相似文献   

20.
Twisted cubes, crossed cubes, Möbius cubes, and locally twisted cubes are some of the widely studied hypercube variants. The 4-pancyclicity of twisted cubes, crossed cubes, Möbius cubes, locally twisted cubes and the 4-edge-pancyclicity of twisted cubes, crossed cubes, Möbius cubes are proven in [C.P. Chang, J.N. Wang, L.H. Hsu, Topological properties of twisted cube, Inform. Sci. 113 (1999) 147-167; C.P. Chang, T.Y. Sung, L.H. Hsu, Edge congestion and topological properties of crossed cubes, IEEE Trans. Parall. Distr. 11 (1) (2000) 64-80; J. Fan, Hamilton-connectivity and cycle embedding of the Möbius cubes, Inform. Process. Lett. 82 (2002) 113-117; X. Yang, G.M. Megson, D.J. Evans, Locally twisted cubes are 4-pancyclic, Appl. Math. Lett. 17 (2004) 919-925; J. Fan, N. Yu, X. Jia, X. Lin, Embedding of cycles in twisted cubes with edge-pancyclic, Algorithmica, submitted for publication; J. Fan, X. Lin, X. Jia, Node-pancyclic and edge-pancyclic of crossed cubes, Inform. Process. Lett. 93 (2005) 133-138; M. Xu, J.M. Xu, Edge-pancyclicity of Möbius cubes, Inform. Process. Lett. 96 (2005) 136-140], respectively. It should be noted that 4-edge-pancyclicity implies 4-node-pancyclicity which further implies 4-pancyclicity. In this paper, we outline an approach to prove the 4-edge-pancyclicity of some hypercube variants and we prove in particular that Möbius cubes and locally twisted cubes are 4-edge-pancyclic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号