首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This paper deals with the robust finite time tracking of desired trajectories for a wide group of robotic manipulators in spite of unknown disturbances, uncertainties, and saturations of actuators while only manipulator's positions are available and its velocities are not measurable physically. A new form of chattering‐free second order fast nonsingular terminal sliding mode control scheme is introduced to design input torques for fulfilling the determined tracking objective in the adjustable total finite settling time. The proposed control algorithm is incorporated with two nonlinear observers to estimate disturbances and velocities of joints within finite settling times. The global finite time stability of the closed‐loop manipulator is analytically proved. Finally, a numerical simulation is carried out to verify the effectiveness of the designed input torques. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
This paper deals with the design of observers for Lipschitz nonlinear systems with not only unknown inputs but also measurement noise when the observer matching condition is not satisfied. First, an augmented vector is introduced to construct an augmented system, and an auxiliary output vector is constructed such that the observer matching condition is satisfied and then a high-gain sliding mode observer is considered to get the exact estimates of both the auxiliary outputs and their derivatives in a finite time. Second, for nonlinear system with both unknown inputs and measurement noise, an adaptive robust sliding mode observer is developed to asymptotically estimate the system’s states, and then an unknown input and measurement noise reconstruction method is proposed. Finally, a numerical simulation example is given to illustrate the effectiveness of the proposed methods.  相似文献   

3.
刘仁和  刘乐  方一鸣  王馨 《控制与决策》2022,37(11):2941-2948
针对一类非线性系统同时存在执行器故障、传感器故障和扰动的问题,提出一种基于有限时间未知输入观测器的故障检测与估计方法.首先,通过线性非奇异变换将原系统解耦为两个降阶的子系统,其中一个子系统只包含扰动,另一个子系统同时包含扰动和故障;然后,通过一阶低通滤波器获得新的状态并与子系统构成增广系统,实现将原系统的传感器故障转化为增广系统的执行器故障;接着,设计未知输入观测器对增广系统故障进行检测,实现在有限时间内估计出系统的扰动和故障,并通过理论分析验证所设计观测器的有限时间收敛性;最后,基于永磁同步电机(PMSM)转速系统进行仿真研究,仿真结果验证了所提出方法的有效性.  相似文献   

4.
This paper considers the design of low-order unknown input functional observers for robust fault detection and isolation of a class of nonlinear Lipschitz systems subject to unknown inputs. The proposed functional observers can be used to generate residual signals to detect and isolate actuator faults. By using the generalized inverse approach, the effect of the unknown inputs can be decoupled completely from the residual signals. Conditions for the existence and stability of reduced-order unknown input functional observer are derived. A design procedure for the generation of residual signals to detect and isolate actuator faults is presented using the proposed unknown-input observer-based approach. A numerical example is given to illustrate the proposed fault diagnosis scheme in nonlinear systems subject to unknown inputs.  相似文献   

5.
基于未知输入观测器设计和故障诊断的概念,讨论含未知输入的Lipschitz条件下非线性广义系统传感器故障诊断问题。在非线性广义系统中,通过引入传感器的故障信号,重新构造非线性广义系统,设计基于未知输入观测器,在满足Lipschitz条件下,实现了传感器故障的检测与分离。给出数值仿真算例验证该算法的有效性。  相似文献   

6.
The full order robust unknown input observers for continuous systems are presented. The observers are designed for both linear and nonlinear systems considering both noise and uncertainties. First, an unknown input observer is designed for linear systems. The observer is derived based on linear matrix inequality (LMI) approach. Then the observer design problem is extended for a class of nonlinear systems whose nonlinear function satisfies the Lipschitz condition. The main advantage of these observers over the existing works on UIO design is that these can handle both noise and uncertainties simultaneously. The performance of the observers is demonstrated by applying it to the robust state estimation of single link robot arm.  相似文献   

7.
In this study, the problem of finite‐time practical control of a class of nonlinear switched systems in the presence of input nonlinearities is investigated. The subsystems of the switched system are considered as complex nonlinear systems with a cascade structure. Each subsystem is fluctuated by lumped uncertainties. Moreover, some parts of the system's dynamics are considered to be unknown in advance. This paper sets no restrictive assumption on the switching logic of the system. Therefore, the aim is to propose a controller to work under any arbitrary switching signals. After providing a smooth sliding manifold, a simple adaptive control input is developed such that the system trajectories approach the prescribed sliding mode dynamics in finite‐time sense. The adopted control signal does not use the upper bounds of the lumped uncertainties, and it is robust against unknown nonlinear parts of the subsystems. It is proved that the origin is the (practical) finite‐time stable equilibrium point of the overall closed‐loop system. Subsequently, the proposed control rule is modified to handle the same switched system with no input nonlinearities. Computer simulations via 2 chaotic electric direct current machines demonstrate the robust performance of the derived variable structure control algorithm against system fluctuations and nonlinear inputs.  相似文献   

8.
针对受限的非仿射非线性系统,结合自抗扰思想提出了非仿射系统的扩张状态观测器(ESO)设计,从而将辅助系统设计技巧拓展到了非仿射系统,然后利用反演和指令滤波器设计了自适应控制器,为受限的不确定非仿射系统提供了新的设计思路.为了补偿受限带来的影响,引入了辅助系统,它的状态被用来补偿跟踪误差.指令滤波器用来处理虚拟控制受限问题,同时获得虚拟控制导数的估计,避免了backstepping中对它的繁琐计算,扩张状态观测器被用来估计系统的未知非仿射非线性项和外部干扰.利用输入状态稳定性(ISS)分析了闭环系统的全局一致有界稳定性.最后仿真结果验证了该设计方案的有效性.  相似文献   

9.
10.
This paper deals with asymptotic rejection of disturbances generated from non-linear exosystems for uncertain nonlinear systems in an extended output feedback form, which allows the vector field coupled with the system input to have different nonlinear functions of the system output as its elements. A new internal model design is proposed to deal with nonlinear functions of the system output that are coupled with the input and the unknown disturbance. Adaptive control techniques are then used to deal with the uncertainty in the system. The proposed adaptive disturbance rejection algorithm with the new internal model design ensures the asymptotic rejection of the unknown nonlinear disturbance and the boundedness of all the variables.  相似文献   

11.
This paper investigates the finite‐time control problem for a class of stochastic nonlinear systems with stochastic integral input‐to‐state stablility (SiISS) inverse dynamics. Motivated by finite‐time stochastic input‐to‐state stability and the concept of SiISS using Lyapunov functions, a novel finite‐time SiISS using Lyapunov functions is introduced firstly. Then, by adopting this novel finite‐time SiISS small‐gain arguments, using the backstepping technique and stochastic finite‐time stability theory, a systematic design and analysis algorithm is proposed. Given the control laws that guarantee global stability in probability or asymptotic stability in probability, our design algorithm presents a state‐feedback controller that can ensure the solution of the closed‐loop system to be finite‐time stable in probability. Finally, a simulation example is given to demonstrate the effectiveness of the proposed control scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
This paper proposes an actuator fault detection and isolation strategy based on a bank of unknown input observers with finite frequency specifications. In order to deal with actuator fault diagnosis problem, a bank of H ?/H unknown input observers are designed to generate residuals, which are insensitive to the corresponding faults but sensitive to the other actuators faults, and meanwhile robust against the unknown disturbances. In this paper, the actuator faults and unknown disturbances are considered to belong to finite frequency domains, and two finite frequency performance indices are used to measure the fault sensitivity and the disturbance robustness of the residuals. Furthermore, some parameters for extra design of freedom are introduced in the H ?/H unknown input observers design. Based on the generalised Kalman‐Yakubovich‐Popov (GKYP) lemma, the design conditions of the H ?/H unknown input observer are derived and formulated as linear matrix inequalities (LMIs). Finally, a VTOL aircraft model is used to demonstrate the performance of the proposed fault diagnosis scheme.  相似文献   

13.
This paper presents an adaptive fuzzy iterative learning control (ILC) design for non-parametrized nonlinear discrete-time systems with unknown input dead zones and control directions. In the proposed adaptive fuzzy ILC algorithm, a fuzzy logic system (FLS) is used to approximate the desired control signal, and an additional adaptive mechanism is designed to compensate for the unknown input dead zone. In dealing with the unknown control direction of the nonlinear discrete-time system, a discrete Nussbaum gain technique is exploited along the iteration axis and applied to the adaptive fuzzy ILC algorithm. As a result, it is proved that the proposed adaptive fuzzy ILC scheme can drive the ILC tracking errors beyond the initial time instants into a tunable residual set as iteration number goes to infinity, and keep all the system signals bounded in the adaptive ILC process. Finally, a simulation example is used to demonstrate the feasibility and effectiveness of the adaptive fuzzy ILC scheme.  相似文献   

14.
研究了含未知输入的非方广义系统的有限时间输入解耦观测器设计问题,在一定条件下基于非方广义系统的结构特征,引入一个输入-状态对的非奇异转换,把含未知输入的非方广义系统等价地转化为输入已知的正常状态空间系统.用传统的设计正常状态空间系统观测器的方法去构造含未知输入的非方广义系统的未知输入观测器,并给出了观测器存在的充分条件,由此得出了有限时间观测器的设计步骤.  相似文献   

15.
16.
朱新峰  丁文武  张天平 《控制与决策》2022,37(10):2575-2584
研究具有输入量化和全状态约束的非严格反馈随机非线性系统的有限时间自适应跟踪控制.首先,利用双曲正切函数进行非线性映射,消除全状态约束的限制,将系统变换为无约束系统;其次,引入滞回量化器克服量化信号中的抖动和量化误差.为实现有限时间控制,提出概率意义下半全局有限时间稳定控制方法,加快系统的收敛速度,并在此基础上采用径向基函数神经网络逼近未知非线性函数;接着,基于动态面控制技术和高斯函数的性质,对变换后的非严格反馈随机系统进行自适应控制设计,所设计的控制器能够保证闭环系统中的所有信号在概率意义下有限时间稳定;最后通过仿真实验表明所设计控制方案的有效性.  相似文献   

17.
In this work, we present a novel adaptive decentralized finite‐time fault‐tolerant control algorithm for a class of multi‐input–multi‐output interconnected nonlinear systems with output constraint requirements for each vertex. The actuator for each system can be subject to unknown multiplicative and additive faults. Parametric system uncertainties that model the system dynamics for each vertex can be effectively dealt with by the proposed control scheme. The control input gain functions of the nonlinear systems can be not fully known and state dependent. Backstepping design with a tan‐type barrier Lyapunov function and a new structure of stabilizing function is presented. We show that under the proposed control scheme, with the use of graph theory, finite‐time convergence of the system output tracking error into a small set around zero is guaranteed for each vertex, while the time‐varying constraint requirement on the system output tracking error for each vertex will not be violated during operation. An illustrative example on 2 interacting 2‐degree‐of‐freedom robot manipulators is presented in the end to further demonstrate the effectiveness of the proposed control scheme.  相似文献   

18.
19.
Anti‐disturbance control and estimation problem are investigated for nonlinear system subject to multi‐source disturbances. The disturbances classified model is proposed based on the error and noise analysis of priori knowledge. The disturbance observers are constructed separately from the controller design to estimate the disturbance with partial known information. By integrating disturbance‐observer‐based control with discrete‐time sliding‐mode control (DSMC), a novel type of composite stratified anti‐disturbance control scheme is presented for a class of multiple‐input–multiple‐output discrete‐time systems with known and unknown nonlinear dynamics, respectively. Simulations for a flight control system are given to demonstrate the effectiveness of the results compared with the previous schemes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号