首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对于一类带有内动态的单输入-单输出不确定离散非线性系统,基于滑模预测控制技术设计了一个控制器.通过反馈校正和滚动优化技术,可以及时补偿不确定性的影响,提高了匹配和不匹配不确定项的鲁棒性.然后,通过滚动优化技术得到期望的滑模控制律.特别地,通过预测控制,滑模控制的抖振现象可以消除.最后,在不确定项的界未知的情况下,得到闭环系统的所有信号都是有界的,并且跟踪误差是鲁棒稳定的.仿真例子说明所提出控制方法的有效性.  相似文献   

2.
Although correspondence between the poles of a continuous-time and sampled-data system with a piecewise constant input is simple and desirable from the stability viewpoint, the relationship between zeros is intricate. Inversion of a sampled-data system is mostly unstable irrespective of the stability of the continuous-time counterpart. This makes it difficult to apply inversion-based control techniques such as perfect tracking, transient response shaping or iterative learning control to sampled-data systems. Although recently developed noncausal inversion techniques help us to circumvent unboundedness of the inversion caused by unstable zeros, whether the inversion of sampled-data systems approximates the continuous-time counterpart or not as the sample period is shortened is still to be determined. This article gives a positive conclusion to this problem.  相似文献   

3.
In this article, output tracking for a class of nonlinear non-minimum phase systems with output delay is considered. By applying the first-order Padé approximation technique to deal with the time-delay function, the original control problem is reduced to the output-tracking problem of a new non-minimum phase system without delay. The bounded tracking profiles of the unstable internal dynamics in the new system are generated by using the nonlinear inversion-based method, and a complete sliding mode control scheme is proposed to stabilise the output-tracking error as well as the internal dynamics. Moreover, the proposed control scheme is applied to solve the flight-path angle tracking problem of an F-16 jet fighter.  相似文献   

4.
Knut  Veit  Michael 《Automatica》2005,41(12):2033-2041
The finite-time transition between stationary setpoints of nonlinear SISO systems is considered as a scenario for the presentation of a new design approach for inversion-based feedforward control. Design techniques which are based on a stable system inversion result in input trajectories with pre- and/or post-actuation intervals. The presented approach treats the considered transition task as a two-point boundary value problem (BVP) and yields causal feedforward trajectories, which are constant outside the transition interval. The main idea of this approach is to provide free parameters in the desired output trajectory to solve the BVP of the internal dynamics. Thereby, a standard MATLAB function can be used for the numerical solution of the BVP. Feedforward control design techniques are illustrated by simulation results for a simple example.  相似文献   

5.
黄超  何衍  叶旭东 《自动化学报》2011,37(6):766-772
研究了当存在确定性干扰时, 多智能体系统的协作跟踪控制问题. 系统中个体之间的通信拓扑由时不变的有向图网络构成, 而每个个体的动态特性均由单输入单输出的线性系统描述. 本文将多智能体的分布式协调控制问题理解成并归结为输出调节问题来解决, 并由此提出了一种基于个体间相对输出反馈机制以及经典极点配置理论的分布式协作控制律. “内模原理”的使用也因此显得尤其重要. 此外, 为了分析所提出的控制律的稳定性, 本文还引入了复根轨迹的概念, 这是对经典根轨迹技术的推广, 它在本文中的有效应用显示了其潜在的应用价值.  相似文献   

6.
张黎  刘山 《自动化学报》2014,40(12):2716-2725
针对重复运行的未知非最小相位系统的轨迹跟踪问题, 结合时域稳定逆特点, 提出了一种新的基函数型自适应迭代学习控制(Basis function based adaptive iterative learning control, BFAILC)算法. 该算法在迭代控制过程中应用自适应迭代学习辨识算法估计基函数模型, 采用伪逆型学习律逼近系统的稳定逆, 保证了迭代学习控制的收敛性和鲁棒性. 以傅里叶基函数为例, 通过在非最小相位系统上的控制仿真, 验证了算法的有效性.  相似文献   

7.
针对一类含不确定参数及未知扰动的高阶非线性系统,采用类Lyapunov方法,结合部分限幅学习律和滑模控制的优点,提出一种新的滑模鲁棒迭代学习控制算法.根据系统中不确定量的特性,将系统中的不确定性划分为两类:仅沿时间轴变化的不确定性和仅沿迭代轴变化的不确定性.前者采用迭代辨识方法处理,后者采用迭代滑模技术解决.在整个作业区间上,随着迭代次数的增加,控制算法确保系统的跟踪误差收敛到一个界内,控制器信号无抖颤,且闭环系统中其余变量一致有界.当系统扰动仅沿时间轴变化时,系统跟踪误差及其各阶导数沿迭代轴渐近收敛到0,实现系统各个状态的精确跟踪.相比利用连续函数近似法的传统滑模控制,该算法对未知扰动具有更好的鲁棒性.理论证明和仿真结果都说明了该算法的有效性.  相似文献   

8.
An RBF neural network-based adaptive control is proposed for Single-Input and Single-Output (SISO) linearisable nonlinear systems in this paper. It is shown that a SISO nonlinear system is first linearised by using the differential geometric approach in the state space, and the linearised nonlinear system is then treated as a partially known system. The known dynamics are used to design a nominal feedback controller to stabilise the nominal system, and an adaptive RBF neural network-based compensator is then designed to compensate for the effects of uncertain dynamics. The main function of the RBF neural network in this work is to adaptively learn the upper bound of the system uncertainty, and the output of the neural network is then used to adaptively adjust the gain of the compensator so that the strong robustness with respect to unknown dynamics can be obtained, and the tracking error between the plant output and the desired reference signal can asymptotically converge to zero. A simulation example is performed in support of the proposed scheme.  相似文献   

9.
It is proposed here to use a robust tracking design based on adaptive fuzzy control technique to control a class of multi-input-multi-output (MIMO) nonlinear systems with time delayed uncertainty in which each uncertainty is assumed to be bounded by an unknown gain. This technique will overcome modeling inaccuracies, such as drag and friction losses, effect of time delayed uncertainty, as well as parameter uncertainties. The proposed control law is based on indirect adaptive fuzzy control. A fuzzy model is used to approximate the dynamics of the nonlinear MIMO system; then, two on-line estimation schemes are developed to overcome the nonlinearities and identify the gains of the delayed state uncertainties, simultaneously. The advantage of employing an adaptive fuzzy system is the use of linear analytical results instead of estimating nonlinear system functions with an online update law. The adaptive fuzzy scheme uses a Variable Structure (VS) scheme to resolve the system uncertainties, time delayed uncertainty and the external disturbances such that H tracking performance is achieved. The control laws are derived based on a Lyapunov criterion and the Riccati-inequality such that all states of the system are uniformly ultimately bounded (UUB). Therefore, the effect can be reduced to any prescribed level to achieve H tracking performance. A two-connected inverted pendulums system on carts and a two-degree-of-freedom mass-spring-damper system are used to validate the performance of the proposed fuzzy technique for the control of MIMO nonlinear systems.  相似文献   

10.
This paper presents a simple and robust non inversion-based perfect tracking control (RNIBPTC) strategy for robot manipulators. The proposed approach is capable to eliminate the environmental problems arising from classic feedforward control design and so guarantees an appropriate level of robustness of control system to uncertainties including external disturbances, unmodeled dynamics, friction force and variation of payload. Extensive simulation results performed using a two degree-of-freedom actuated elbow robot prove the effectiveness of the proposed approach. The results are also compared to those obtained from Internal Model Control approach. Using free model of system in control law design is a considerable point in the field of robot manipulator control.  相似文献   

11.
In this paper, a finite-horizon neuro-optimal tracking control strategy for a class of discrete-time nonlinear systems is proposed. Through system transformation, the optimal tracking problem is converted into designing a finite-horizon optimal regulator for the tracking error dynamics. Then, with convergence analysis in terms of cost function and control law, the iterative adaptive dynamic programming (ADP) algorithm via heuristic dynamic programming (HDP) technique is introduced to obtain the finite-horizon optimal tracking controller which makes the cost function close to its optimal value within an ?-error bound. Three neural networks are used as parametric structures to implement the algorithm, which aims at approximating the cost function, the control law, and the error dynamics, respectively. Two simulation examples are included to complement the theoretical discussions.  相似文献   

12.
彭超  徐红兵  张健 《控制与决策》2011,26(8):1264-1268
针对MIMO系统的轨迹跟踪,提出一种基于鲁棒开环解耦的系统逆二自由度(2DOF)控制方法.该方法通过鲁棒开环解耦解决MIMO系统的耦合问题,利用系统逆2DOF控制保证轨迹跟踪性能.首先提出一种保证预补偿器阶数最小和解耦系统鲁棒性的鲁棒开环解耦方法;然后结合鲁棒开环解耦和系统逆2DOF控制,给出系统逆前馈控制和H∞混合灵敏度鲁棒反馈控制器的设计方法;最后通过设计实例及仿真结果验证了该控制方法的有效性.  相似文献   

13.
Good tracking performance is very important for trajectory tracking control of robotic systems. In this paper, a new model-free control law, called PD with sliding mode control law or PD–SMC in short, is proposed for trajectory tracking control of multi-degree-of-freedom linear translational robotic systems. The new control law takes the advantages of the simplicity and easy design of PD control and the robustness of SMC to model uncertainty and parameter fluctuation, and avoid the requirements for known knowledge of the system dynamics associated with SMC. The proposed control has the features of linear control provided by PD control and nonlinear control contributed by SMC. In the proposed PD–SMC, PD control is used to stabilize the controlled system, while SMC is used to compensate the disturbance and uncertainty and reduce tracking errors dramatically. The stability analysis is conducted for the proposed PD–SMC law, and some guidelines for the selection of control parameters for PD–SMC are provided. Simulation results prove the effectiveness and robustness of the proposed PD–SMC. It is also shown that PD–SMC can achieve very good tracking performances compared to PD control under the uncertainties and varying load conditions.  相似文献   

14.
惠宇  池荣虎 《控制理论与应用》2018,35(11):1672-1679
针对一类带扰动有限时间内重复运行的离散时间非线性非仿射不确定系统,本文提出了一种基于迭代扩张状态观测器的数据驱动最优迭代学习控制方法.首先,提出了改进的迭代动态线性化方法,将被控系统线性化为与控制输入有关的仿射形式,并将不确定性合并到一个非线性项中;然后,设计了迭代扩张状态观测器对非线性不确定项进行估计,作为对扰动的补偿;最后,设计了性能指标函数,通过最优技术,提出了参数迭代更新律和最优学习控制律.本文通过数学分析,证明了跟踪误差的有界收敛性.仿真结果验证了方法的有效性.所提出的新型迭代动态线性化方法可很大程度上降低线性化后的控制增益的动态复杂性,使其易于估计.所提出的迭代扩张状态观测器可以在重复中学习,对非重复扰动可进行有效的估计.此外,本文控制器的设计与分析是数据驱动的控制方法,除了被控系统的输入输出数据以外,不需要任何其他模型信息.  相似文献   

15.
Two tuning techniques are proposed to design decentralized PID controllers for weakly coupled and general MIMO systems, respectively. Each SISO loop is designed separately, and the controller parameters are obtained as a solution of a linear programming optimization problem with constraints on the process stability margins. Despite the SISO approach, loop interactions are accounted for either by Gershgorin bands (non-iterative method) or an equivalent open-loop process (iterative method). The tuning results and performance from both methods are illustrated in four simulations of linear processes, and a laboratory-scale application in a Peltier process. Four applications contemplate closed-loop performance comparisons between the proposed techniques and techniques from the literature. One application illustrates the feasibility of the proposed iterative method, based on EOPs, in tuning decentralized PIDs for a 5 × 5 system. Moreover, an analysis of the effect of model uncertainty in the phase and gain margins of the closed-loop process is performed.  相似文献   

16.
In this paper, we derive tracking control laws for non-minimum phase nonlinear systems with both fast and slow, possibly unstable, zero dynamics. The fast zero dynamics arise from a perturbation of a nominal system. These fast zeros can be problematic in that they may be in the right half plane and may cause large magnitude tracking control inputs. In this paper, we combine the ideas from some recent work of Hunt, Meyer and Su with that of Devasia, Chen and Paden on an asymptotic tracking procedure for non-minimum phase nonlinear systems. We give (somewhat subtle) conditions under which the tracking control input is bounded as the magnitude of the perturbation of the nominal system becomes zero. Explicit bounds on the control inputs are calculated for both SISO and MIMO systems using some interesting non-standard singular perturbation techniques. The method is applied to a suite of examples, including the simplified planar dynamics of VTOL and CTOL aircraft.  相似文献   

17.
针对一类不确定非线性系统, 提出一种变结构神经网络自适应鲁棒控制(Variable structure neural network adaptive robust control, VSNNARC)方法. 其中变结构神经网络用于在线辨识系统未知非线性函数, 该网络利用节点激活与催眠技术进行动态调节, 减小网络规模与计算量; 自适应鲁棒控制用于网络权值学习与系统建模误差及外部扰动补偿. 采用Lyapunov稳定性分析法, 给出网络权值自适应律的形式以及鲁棒控制项的设计方法. 该方法不仅能保证系统的稳定性, 也能保证系统具有很好的瞬态性能. 将该方法应用到转台伺服系统的位置跟踪控制中, 实际运行结果表明, 该方法使系统具有很强的鲁棒性及良好的跟踪效果.  相似文献   

18.
This work presents an adaptive fuzzy sliding mode controller (AFSMC) that combines a robust proportional integral control law for use in designing single-input single-output (SISO) nonlinear systems with uncertainties and external disturbances. The fuzzy logic system is used to approximate the unknown system function and the AFSMC algorithm is designed by used of sliding mode control techniques. Based on the Lyapunov theory, the proportional integral control law is designed to eliminate the chattering action of the control signal. The simplicity of the proposed scheme facilitates its implementation and the overall control scheme guarantees the global asymptotic stability in the Lyapunov sense if all the signals involved are uniformly bounded. Simulation studies have shown that the proposed controller shows superior tracking performance.  相似文献   

19.
This article synthesizes a recursive filtering adaptive fault‐tolerant tracking control method for uncertain switched multivariable nonlinear systems. The multivariable nonlinear systems under consideration have both matched and mismatched uncertainties, which satisfy the semiglobal Lipschitz condition. A piecewise constant adaptive law generates adaptive parameters by solving the error dynamics with the neglection of unknowns, and the recursive least squares is employed to minimize the residual error by categorizing the total uncertainty estimates into matched and mismatched components. A filtering control law is designed to compensate the actuator faults and nonlinear uncertainties such that a good tracking performance is delivered with guaranteed robustness. The matched component is canceled directly by adopting their opposite in the control signal, whereas a dynamic inversion of the system is performed to eliminate the effect of the mismatched component on the output. By exploiting the average dwell time principle, the error bounds are derived for the states and control inputs compared with the virtual reference system which defines the best performance that can be achieved by the closed‐loop system. Both numerical and practical examples are provided to illustrate the effectiveness of the proposed switching recursive filtering adaptive fault‐tolerant tracking control architecture, comparisons with model reference adaptive control are also carried out.  相似文献   

20.
How to improve the control of batch processes is not an easy task because of modeling errors and time delays. In this work, novel iterative learning control (ILC) strategies, which can fully use previous batch control information and are attached to the existing control systems to improve tracking performance through repetition, are proposed for SISO processes which have uncertainties in modeling and time delays. The dynamics of the process are represented by transfer function plus pure time delay. The stability properties of the proposed strategies for batch processes in the presence of uncertainties in modeling and/or time delays are analyzed in the frequency domain. Sufficient conditions guaranteeing convergence of tracking error are stated and proven. Simulation and experimental examples demonstrating these methods are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号