首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Automatica》2014,50(12):3268-3275
This paper investigates the problem of Hankel-norm output feedback controller design for a class of T–S fuzzy stochastic systems. The full-order output feedback controller design technique with the Hankel-norm performance is proposed by the fuzzy-basis-dependent Lyapunov function approach and the conversion on the Hankel-norm controller parameters. Sufficient conditions are established to design the controllers such that the resulting closed-loop system is stochastically stable and satisfies a prescribed performance. The desired output feedback controller can be obtained by solving a convex optimization problem, which can be efficiently solved by standard numerical algorithms. Finally, a Henon map system is used to illustrate the effectiveness of the proposed techniques.  相似文献   

2.
In this paper we consider a linear, discrete‐time system depending multi‐affinely on uncertain, real time‐varying parameters. A new sufficient condition for the stability of this class of systems, in terms of a feasibility problem involving linear matrix inequalities (LMIs), is obtained under the hypothesis that a bound on the rate of variation of the parameters is known. This condition, obtained by the aid of parameter dependent Lyapunov functions, obviously turns out to be less restrictive than that one obtained via the classical quadratic stability (QS) approach, which guarantees stability in presence of arbitrary time‐varying parameters. An important point is that the methodology proposed in this paper may result in being less conservative than the classical QS approach even in the absence of an explicit bound on the parameters rate of variation. Concerning the synthesis context, the design of a gain scheduled compensator based on the above approach is also proposed. It is shown that, if a suitable LMI problem is feasible, the solution of such problem allows to design an output feedback gain scheduled dynamic compensator in a controller‐observer form stabilizing the class of systems which is dealt with. The stability conditions are then extended to take into account L2 performance requirements. Some numerical examples are carried out to show the effectiveness and to investigate the computational burden required by the proposed approach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we focus on the problem of adaptive stabilization for a class of uncertain switched nonlinear systems, whose non-switching part consists of feedback linearizable dynamics. The main result is that we propose adaptive controllers such that the considered switched systems with unknown parameters can be stabilized under arbitrary switching signals. First, we design the adaptive state feedback controller based on tuning the estimations of the bounds on switching parameters in the transformed system, instead of estimating the switching parameters directly. Next, by incorporating some augmented design parameters, the adaptive output feedback controller is designed. The proposed approach allows us to construct a common Lyapunov function and thus the closed-loop system can be stabilized without the restriction on dwell-time, which is needed in most of the existing results considering output feedback control. A numerical example and computer simulations are provided to validate the proposed controllers.  相似文献   

4.
In this paper, we focus on the problem of adaptive stabilisation for a class of interconnected uncertain switched stochastic nonlinear systems. Classical adaptive and backstepping technique are employed for control synthesis. Instead of estimating the switching parameters directly, we design the adaptive controller based on the estimations of bounds on switching time-varying parameters. A smooth function is introduced to deal with the difficulties caused by unknown interactions and tuning function approach is used to circumvent the overparameter problem. It is shown that under the action of the proposed controller all the signals of the overall closed-loop systems are globally uniformly bounded in probability under arbitrary switching. Simulation results are presented to illustrate the effectiveness of the proposed approach.  相似文献   

5.
This paper addresses the problem of decentralized robust stabilization and control for a class of uncertain Markov jump parameter systems. Control is via output feedback and knowledge of the discrete Markov state. It is shown that the existence of a solution to a collection of mode-dependent coupled algebraic Riccati equations and inequalities, which depend on certain additional parameters, is both necessary and sufficient for the existence of a robust decentralized switching controller. A guaranteed upper bound on robust performance is also given. To obtain a controller which satisfies this bound, an optimization problem involving rank constrained linear matrix inequalities is introduced, and a numerical approach for solving this problem is presented. To demonstrate the efficacy of the proposed approach, an example stabilization problem for a power system comprising three generators and one on-load tap changing transformer is considered.  相似文献   

6.
This paper proposes a sliding mode observer–controller design method for uncertain Markovian jump systems with time delays and uncertain switching probabilities. Both the structures of a sliding mode observer and a sliding mode controller are given. By the mode‐dependent Lyapunov functional approach, a sufficient condition for the stochastic stability of the closed‐loop system is given, which can be converted into a convex optimization problem. The reachability of the sliding surfaces in both the estimation error space and the state estimate space can be ensured by the presented control scheme. Finally, the effectiveness of the proposed design method is demonstrated by a simulation example. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, the problem of exponential stability analysis and the design of sampled‐data nonlinear systems have been studied using a polytopic linear parameter‐varying approach. By means of modeling a new double‐layer polytopic formulation for nonlinear sampled‐data systems, a modified form of piecewise continuous Lyapunov‐Krasovskii functional is proposed. This approach provides less conservative robust exponential stability conditions by using Wirtinger's inequality in terms of linear matrix inequalities. The distances between the real continuous parameters of the plant and the measured parameters of the controller are modeled by convex sets, and the analysis/design conditions are given at the vertices of some hyper‐rectangles. In order to get tractable linear matrix inequality conditions for the stabilization problem, we performed relaxation by introducing a slack variable matrix. Under the new stability criteria, an approach is introduced to synthesize a sampled‐data polytopic linear parameter‐varying controller considering some constraints on the location of the closed‐loop poles in the presence of uncertainties on the varying parameters. It is shown that the proposed controller guarantees the exponential stability of the closed‐loop system for aperiodic sampling periods smaller than a known value, ie, maximum allowable sampling period. Finally, the effectiveness of the proposed approach is verified and compared with some state‐of‐the‐art existing approaches through numerical simulations.  相似文献   

8.
研究了一类具有不可控不稳定线性化的非线性系统的自适应控制问题.该类系统的控制方向未知且含有不确定时变非线性参数.应用Nussbaum-type增益技术和adding a power integrator递推设计方法,设计了一种鲁棒自适应状态反馈控制器.所设计的控制器能够保证闭环系统的所有信号全局一致有界,且系统的状态渐近趋于零.除了假设未知参数及不确定性有界外,所设计的控制策略不需要控制系数的任何先验知识.仿真例子验证了算法的有效性.  相似文献   

9.
An ellipsoid algorithm for probabilistic robust controller design   总被引:1,自引:0,他引:1  
In this paper, a new iterative approach to probabilistic robust controller design is presented, which is applicable to any robust controller/filter design problem that can be represented as an LMI feasibility problem. Recently, a probabilistic Subgradient Iteration algorithm was proposed for solving LMIs. It transforms the initial feasibility problem to an equivalent convex optimization problem, which is subsequently solved by means of an iterative algorithm. While this algorithm always converges to a feasible solution in a finite number of iterations, it requires that the radius of a non-empty ball contained into the solution set is known a priori. This rather restrictive assumption is released in this paper, while retaining the convergence property. Given an initial ellipsoid that contains the solution set, the approach proposed here iteratively generates a sequence of ellipsoids with decreasing volumes, all containing the solution set. At each iteration a random uncertainty sample is generated with a specified probability density, which parameterizes an LMI. For this LMI the next minimum-volume ellipsoid that contains the solution set is computed. An upper bound on the maximum number of possible correction steps, that can be performed by the algorithm before finding a feasible solution, is derived. A method for finding an initial ellipsoid containing the solution set, which is necessary for initialization of the optimization, is also given. The proposed approach is illustrated on a real-life diesel actuator benchmark model with real parametric uncertainty, for which a robust state-feedback controller is designed.  相似文献   

10.
离散不确定控制系统的鲁棒性分析与设计   总被引:3,自引:1,他引:3       下载免费PDF全文
本文在文献[4]的基础上研究了一类离散不确定系统的状态反馈控制问题.文中通过将系统的鲁棒控制器解存在的充分条件转化为一类极小极大的优化命题,然后再通过确定系统的最优解,给出了一种简便而有效的确定极大鲁棒稳定界的方法.从而克服了设计鲁棒控制器所存在的保守性.利用文中的结果还可以将系统的状态反馈系数矩阵的增益设计到最小的程度.  相似文献   

11.
This paper presents a measurement‐based adaptive control design approach for unknown systems working over a wide range of operating conditions. Traditional control design approaches usually require the availability of a mathematical model. However, it has been shown in many practical situations that, due to complex dynamics of physical systems, some simplifying assumptions are made for the derivation of mathematical models. Hence, controller design based on simplified models may result in degradation of the desired closed‐loop performance. Data‐based control design approaches can be viewed as an alternative approach to model‐based methods. Most data‐based control methods available in the literature aim to design controllers for unknown systems that operate only at a given operating point. However, the dynamical behavior of plants may change for different operating conditions, which makes the task of designing a controller that works over the entire range of operating conditions more challenging. In this paper, we address such a problem and propose to design adaptive controllers based on measured data. Such a proposed method is based on designing a set of measurement‐based controllers validated at a finite set of pre‐specified operating points. Then, the parameters of the adaptive controller are obtained by interpolating between the set of pre‐designed controller parameters to derive a gain‐scheduling controller. Moreover, low‐order adaptive controllers can be designed by simply selecting the desired controller structure. The efficacy of the proposed approach is experimentally validated through a practical application to control a heating system operated over a large range of flow rate.  相似文献   

12.
For a class of multi‐input and multi‐output nonlinear uncertainty systems, a novel approach to design a nonlinear controller using minimax linear quadratic regulator (LQR) control is proposed. The proposed method combines a feedback linearization method with the robust minimax LQR approach in the presence of time‐varying uncertain parameters. The uncertainties, which are assumed to satisfy a certain integral quadratic constraint condition, do not necessarily satisfy a generalized matching condition. The procedure consists of feedback linearization of the nominal model and linearization of the remaining nonlinear uncertain terms with respect to each individual uncertainty at a local operating point. This two‐stage linearization process, followed by a robust minimax LQR control design, provides a robustly stable closed loop system. To demonstrate the effectiveness of the proposed approach, an application study is provided for a flight control problem of an air‐breathing hypersonic flight vehicle (AHFV), where the outputs to be controlled are the longitudinal velocity and altitude, and the control variables are the throttle setting and elevator deflection. The proposed method is used to derive a linearized uncertainty model for the longitudinal motion dynamics of the AHFV first, and then a robust minimax LQR controller is designed, which is based on this uncertainty model. The controller is synthesized considering seven uncertain aerodynamic and inertial parameters. The stability and performance of the synthesized controller is evaluated numerically via single scenario simulations for particular cruise conditions as well as a Monte‐Carlo type simulation based on numerous cases. It is observed that the control scheme proposed in this paper performs better, especially from the aspect of robustness to large ranges of uncertainties, than some controller design schemes previously published in the literature. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

13.
The objective of this paper is to present a measurement-based control-design approach for single-input single-output linear systems with guaranteed bounded error. A wide range of control-design approaches available in the literature are based on parametric models. These models can be obtained analytically using physical laws or via system identification using a set of measured data. However, due to the complex properties of real systems, an identified model is only an approximation of the plant based on simplifying assumptions. Thus, the controller designed based on a simplified model can seriously degrade the closed-loop performance of the system. In this paper, an alternative approach is proposed to develop fixed-order controllers based on measured data without the need for model identification. The proposed control technique is based on computing a suitable set of fixed-order controller parameters for which the closed-loop frequency response fits a desired frequency response that meets the desired closed-loop performance specifications. The control-design problem is formulated as a nonlinear programming problem using the concept of bounded error. The main advantages of our proposed approach are: (1) it guarantees that the error between the computed and the desired frequency responses is less than a small value; (2) the difficulty of finding the globally optimal solution in the error minimisation problem is avoided; (3) the controller can be designed without the use of any analytical model to avoid errors associated with the identification process; and (4) low-order controllers can be designed by selecting a fixed low-order controller structure. To experimentally validate and illustrate the efficacy of the proposed approach, proportional-integral measurement-based controllers are designed for a DC (direct current) servomotor.  相似文献   

14.
This paper presents a novel approach to the problem of discrete time output feedback sliding‐mode control design. The method described applies to uncertain systems (with matched uncertainties) which are not necessarily minimum phase or relative degree one. A new sliding surface is proposed, which is associated with the equivalent control of the output feedback sliding‐mode controller. Design freedom is available to select the sliding surface parameters to produce an appropriate reduced‐order sliding motion. In order for this to be achieved, a static output feedback condition associated with a certain reduced‐order system obtained from the original plant must be solvable. The practicality of the results are demonstrated through the implementation of the controller on a small DC motor test rig. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, an adaptive dynamic surface control scheme is proposed for a class of multi-input multi-output (MIMO) nonlinear time-varying systems. By fusing a bound estimation approach, a smooth function and a time-varying matrix factorisation, the obstacle caused by unknown time-varying parameters is circumvented. The proposed scheme is free of the problem of explosion of complexity and needs only one updated parameter at each design step. Moreover, all tracking errors can converge to predefined arbitrarily small residual sets with a prescribed convergence rate and maximum overshoot. Such features result in a simple adaptive controller which can be easily implemented in applications with less computational burden and satisfactory tracking performance. Simulation results are presented to illustrate the effectiveness of the proposed scheme.  相似文献   

16.
In this paper, we consider a class of MIMO nonlinear systems with fast time‐varying parametric uncertainties. First, the tracking problem of general nonlinearly time‐varyingly parameterized systems is solved. Then, a Lyapunov‐based singularity free adaptive controller is proposed for the considered system. Specifically, an estimation approach with a proportional plus integral adaptation scheme is utilized to update the estimations of the unknown parameters under a mild assumption that the signs of the leading minors of the input gain matrix are known. The asymptotic stability is achieved with full state feedback. Furthermore, we design an output feedback controller by utilizing a standard high‐gain observer and achieve uniformly ultimately bounded convergence. Simulation examples illustrate the effectiveness of the proposed methods.  相似文献   

17.
The paper addresses the distributed event‐triggered consensus problem in directed topologies for multi‐agent systems (MAS) with general linear dynamic agents. A co‐design approach is proposed to determine parameters of the consensus controller and its event‐triggered mechanism (ETM), simultaneously. This approach guarantees asymptotic stability along with decreasing data transmission among agents. In the proposed event‐based consensus controller, each agent broadcasts data to the neighbors only at its own triggering instants; this differs from previous studies in which continuous data streams among agents were required. Furthermore, the proposed control law is based on the piecewise constant functions of the measurement values, which are updated at triggering instants. In this case the control scheme decreases the communication network usage, energy consumption, and wear of the actuator. As a result, it facilitates distributed implementation of the proposed consensus controller for real‐world applications. A theorem is proved to outline sufficient conditions to guarantee the asymptotic stability of the closed‐loop system with the event‐based consensus controller. Another theorem is also proved to show the Zeno behavior exclusion. As a case study, the proposed event‐based controller is applied for a diving consensus problem to illustrate the effectiveness of the method.  相似文献   

18.
This paper considers the problem of guaranteed cost control for uncertain neutral delay systems with a quadratic cost function. The system under consideration is subject to norm‐bounded time‐varying parametric uncertainty appearing in all the matrices of the state‐space model. The problem we address is the design of a state feedback controller such that the closed‐loop system is not only stable but also guarantees an adequate level of performance for all admissible uncertainties. A sufficient condition for the existence of guaranteed cost controllers is given in terms of a linear matrix inequality (LMI). When this condition is feasible, the desired state feedback controller gain matrices can be obtained via convex optimization. An illustrative example is provided to demonstrate the effectiveness of the proposed approach. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
针对一类不确定性时滞系统, 研究线性二次型最优调节器的鲁棒性设计问题. 首先基于级数近似方法, 将原标称时滞系统的最优调节器问题转化为迭代求解一族不含时滞的两点边值问题, 从而获得标称时滞系统最优控制的近似解. 然后将滑模控制理论应用于最优调节器的设计, 使得系统对于不确定性具有全局的鲁棒性, 并且其理想滑动模态与标称系统的最优闭环控制系统相一致, 从而实现了全局鲁棒最优滑模控制. 仿真示例将所提出的方法与相应的二次型最优控制进行比较, 验证了该方法的有效性和优越性.  相似文献   

20.
Cyber–physical systems are becoming increasingly complex. In these advanced systems, the different engineering domains involved in the design process become more and more intertwined. Therefore, a traditional (sequential) design process becomes inefficient in finding good design options. Instead, an integrated approach is needed where parameters in multiple different engineering domains can be chosen, evaluated, and optimized to achieve a good overall solution. However, in such an approach, the combined design space becomes vast. As such, methods are needed to mitigate this problem.In this paper, we show a method for systematically capturing and updating domain knowledge in the context of a co-design process involving different engineering domains, i.e. control and embedded. We rely on ontologies to reason about the relationships between parameters in the different domains. This allows us to derive a stepwise design space exploration workflow where this domain knowledge is used to quickly reduce the design space to a subset of likely good candidates. We illustrate our approach by applying it to the design space exploration process for an advanced electric motor control system and its deployment on embedded hardware.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号