首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
陈全  赵文辉  李洁  江雨燕 《微机发展》2010,(2):87-89,94
通过选择性集成可以获得比单个学习器和全部集成学习更好的学习效果,可以显著地提高学习系统的泛化性能。文中提出一种多层次选择性集成学习算法,即在基分类器中通过多次按权重进行部分选择,形成多个集成分类器,对形成的集成分类器进行再集成,最后通过对个集成分类器多数投票的方式决定算法的输出。针对决策树与神经网络模型在20个标准数据集对集成学习算法Ada—ens进行了实验研究,试验证明基于数据的集成学习算法的性能优于基于特征集的集成学习算法的性能,有更好的分类准确率和泛化性能。  相似文献   

2.
通过选择性集成可以获得比单个学习器和全部集成学习更好的学习效果,可以显著地提高学习系统的泛化性能。文中提出一种多层次选择性集成学习算法,即在基分类器中通过多次按权重进行部分选择,形成多个集成分类器,对形成的集成分类器进行再集成,最后通过对个集成分类器多数投票的方式决定算法的输出。针对决策树与神经网络模型在20个标准数据集对集成学习算法Ada—ens进行了实验研究,试验证明基于数据的集成学习算法的性能优于基于特征集的集成学习算法的性能,有更好的分类准确率和泛化性能。  相似文献   

3.
选择性集成学习是为解决同一个问题而训练多个基分类器,并依据某种规则选取部分基分类器的结果进行整合的学习算法。通过选择性集成可以获得比单个学习器和全部集成学习更好的学习效果,可以显著地提高学习系统的泛化性能。提出了一种多层次选择性集成学习算法Ada_ens。试验结果表明,Ada_ens具有更好的学习效果和泛化性能。  相似文献   

4.
提出一种基于类别信息的分类器集成方法Cagging.基于类别信息重复选择样本生成基本分类器的训练集,增强了基本分类器之间的差异性;利用基本分类器对不同模式类的分类能力为每个基本分类器设置一组权重.使用权重对各分类器输出结果进行加权决策,较好地利用了各个基本分类器之间的差异性.在人脸图像库ORL上的实验验证了Cagging的有效性.此外,Cagging方法的基本分类器生成方式适合于通过增量学习生成集成分类器,扩展Cagging设计了基于增量学习的分类器集成方法Cagging-Ⅰ,实验验证了它的有效性.  相似文献   

5.
基于聚类选择的分类器集成*   总被引:1,自引:0,他引:1  
提出了一种基于聚类选择的分类器集成方法,通过聚类把模式特征空间划分成不相交的区域,对于初始分类器集合,各区域给出分类器的删除分值,各分类器总分值确定其删除优先级别,由删除优先级别选择一组分类器组成集成。理论分析和实验结果表明,基于聚类选择的分类器集成方法能够更好地对模式进行分类。  相似文献   

6.
动态分类器集成选择(DCES)是当前集成学习领域中一个非常重要的研究方向。然而,当前大部分 DCES算法的计算复杂度较高。为了解决该问题和进一步提高算法的性能,本文提出了基于聚类的动态分类器集成选择(CDCES),该方法通过对测试样本聚类,极大地减少了动态选择分类器的次数,因而降低了算法的计算复杂度。同时, CDCES是一种更加通用的算法,传统的静态选择性集成和动态分类器集成为本算法的特殊情况,因而本算法是一种鲁棒性更强的算法。通过对UCI数据集进行测试,以及与其他算法作比较,说明本算法是一种有效的、计算复杂度较低的方法。  相似文献   

7.
针对集成分类器由于基分类器过弱,需要牺牲大量训练时间才能取得高精度的问题,提出一种基于实例的强分类器快速集成方法——FSE。首先通过基分类器评价方法剔除不合格分类器,再对分类器进行精确度和差异性排序,从而得到一组精度最高、差异性最大的分类器;然后通过FSE集成算法打破已有的样本分布,重新采样使分类器更多地关注难学习的样本,并以此决定各分类器的权重并集成。实验通过与集成分类器Boosting在UCI数据库和真实数据集上进行比对,Boosting构造的集成分类器的识别精度最高分别能达到90.2%和90.4%,而使用FSE方法的集成分类器精度分别能达到95.6%和93.9%;而且两者在达到相同精度时,使用FSE方法的集成分类器分别缩短了75%和80%的训练时间。实验结果表明,FSE集成模型能有效提高识别精度、缩短训练时间。  相似文献   

8.
一种限制输出模型规模的集成进化分类算法   总被引:1,自引:1,他引:0  
AdaBoost算法是一种典型的集成学习框架,通过线性组合若干个弱分类器来构造成强学习器,其分类精度远高于单个弱分类器,具有很好的泛化误差和训练误差。然而AdaBoost 算法不能精简输出模型的弱分类器,因而不具备良好的可解释性。本文将遗传算法引入AdaBoost算法模型,提出了一种限制输出模型规模的集成进化分类算法(Ensemble evolve classification algorithm for controlling the size of final model,ECSM)。通过基因操作和评价函数能够在AdaBoost迭代框架下强制保留物种样本的多样性,并留下更好的分类器。实验结果表明,本文提出的算法与经典的AdaBoost算法相比,在基本保持分类精度的前提下,大大减少了分类器数量。  相似文献   

9.
蔡铁  伍星  李烨 《计算机应用》2008,28(8):2091-2093
为构造集成学习中具有差异性的基分类器,提出基于数据离散化的基分类器构造方法,并用于支持向量机集成。该方法采用粗糙集和布尔推理离散化算法处理训练样本集,能有效删除不相关和冗余的属性,提高基分类器的准确性和差异性。实验结果表明,所提方法能取得比传统集成学习算法Bagging和Adaboost更好的性能。  相似文献   

10.
半监督集成学习综述   总被引:3,自引:0,他引:3  
半监督学习和集成学习是目前机器学习领域中两个非常重要的研究方向,半监督学习注重利用有标记样本与无标记样本来获得高性能分类器,而集成学习旨在利用多个学习器进行集成以提升弱学习器的精度。半监督集成学习是将半监督学习和集成学习进行组合来提升分类器泛化性能的机器学习新方法。首先,在分析半监督集成学习发展过程的基础上,发现半监督集成学习起源于基于分歧的半监督学习方法;然后,综合分析现有半监督集成学习方法,将其分为基于半监督的集成学习与基于集成的半监督学习两大类,并对主要的半监督集成方法进行了介绍;最后,对现有研究进了总结,并讨论了未来值得研究的问题。  相似文献   

11.
多标签代价敏感分类集成学习算法   总被引:12,自引:2,他引:10  
付忠良 《自动化学报》2014,40(6):1075-1085
尽管多标签分类问题可以转换成一般多分类问题解决,但多标签代价敏感分类问题却很难转换成多类代价敏感分类问题.通过对多分类代价敏感学习算法扩展为多标签代价敏感学习算法时遇到的一些问题进行分析,提出了一种多标签代价敏感分类集成学习算法.算法的平均错分代价为误检标签代价和漏检标签代价之和,算法的流程类似于自适应提升(Adaptive boosting,AdaBoost)算法,其可以自动学习多个弱分类器来组合成强分类器,强分类器的平均错分代价将随着弱分类器增加而逐渐降低.详细分析了多标签代价敏感分类集成学习算法和多类代价敏感AdaBoost算法的区别,包括输出标签的依据和错分代价的含义.不同于通常的多类代价敏感分类问题,多标签代价敏感分类问题的错分代价要受到一定的限制,详细分析并给出了具体的限制条件.简化该算法得到了一种多标签AdaBoost算法和一种多类代价敏感AdaBoost算法.理论分析和实验结果均表明提出的多标签代价敏感分类集成学习算法是有效的,该算法能实现平均错分代价的最小化.特别地,对于不同类错分代价相差较大的多分类问题,该算法的效果明显好于已有的多类代价敏感AdaBoost算法.  相似文献   

12.
一种改进的AdaBoost算法——AD AdaBoost   总被引:19,自引:0,他引:19  
目标检测问题是计算机视觉领域最普遍和关键的问题之一.基于级联结构的AdaBoost算法目前被认为是较有效的检测算法,但是其在低FRR端的性能仍需改进.文章提出了一种针对目标检测问题的改进AdaBoost算法--AD AdaBoost.AD AdaBoost采用了新的参数求解方法,弱分类器的加权参数不但与错误率有关,还与其对正样本的识别能力有关.该算法能够有效地降低分类器在低FRR端的FAR,使其更适用于目标检测问题.新旧算法在复杂背景中文字检测的实验结果对比证实了新算法在性能上的改进.  相似文献   

13.
AdaBoost.M2 and AdaBoost.MH are boosting algorithms for learning from multiclass datasets. They have received less attention than other boosting algorithms because they require base classifiers that can handle the pseudoloss or Hamming loss, respectively. The difficulty with these loss functions is that each example is associated with k weights, where k is the number of classes. We address this issue by transforming an m-example dataset with k weights per example into a dataset with km examples and one weight per example. Minimising error on the transformed dataset is equivalent to minimising loss on the original dataset. Resampling the transformed dataset can be used for time efficiency and base classifiers that cannot handle weighted examples. We empirically apply the transformation on several multiclass datasets using naive Bayes and decision trees as base classifiers. Our experiment shows that it is competitive with AdaBoost.ECC, a boosting algorithm using output coding.  相似文献   

14.
针对传统的分类器集成的每次迭代通常是将单个最优个体分类器集成到强分类器中,而其它可能有辅助作用的个体分类器被简单抛弃的问题,提出了一种基于Boosting框架的非稀疏多核学习方法MKL-Boost,利用了分类器集成学习的思想,每次迭代时,首先从训练集中选取一个训练子集,然后利用正则化非稀疏多核学习方法训练最优个体分类器,求得的个体分类器考虑了M个基本核的最优非稀疏线性凸组合,通过对核组合系数施加LP范数约束,一些好的核得以保留,从而保留了更多的有用特征信息,差的核将会被去掉,保证了有选择性的核融合,然后将基于核组合的最优个体分类器集成到强分类器中。提出的算法既具有Boosting集成学习的优点,同时具有正则化非稀疏多核学习的优点,实验表明,相对于其它Boosting算法,MKL-Boost可以在较少的迭代次数内获得较高的分类精度。  相似文献   

15.
Linear Programming Boosting via Column Generation   总被引:4,自引:0,他引:4  
We examine linear program (LP) approaches to boosting and demonstrate their efficient solution using LPBoost, a column generation based simplex method. We formulate the problem as if all possible weak hypotheses had already been generated. The labels produced by the weak hypotheses become the new feature space of the problem. The boosting task becomes to construct a learning function in the label space that minimizes misclassification error and maximizes the soft margin. We prove that for classification, minimizing the 1-norm soft margin error function directly optimizes a generalization error bound. The equivalent linear program can be efficiently solved using column generation techniques developed for large-scale optimization problems. The resulting LPBoost algorithm can be used to solve any LP boosting formulation by iteratively optimizing the dual misclassification costs in a restricted LP and dynamically generating weak hypotheses to make new LP columns. We provide algorithms for soft margin classification, confidence-rated, and regression boosting problems. Unlike gradient boosting algorithms, which may converge in the limit only, LPBoost converges in a finite number of iterations to a global solution satisfying mathematically well-defined optimality conditions. The optimal solutions of LPBoost are very sparse in contrast with gradient based methods. Computationally, LPBoost is competitive in quality and computational cost to AdaBoost.  相似文献   

16.
针对复杂背景条件下人脸检测的检测率低、速度慢的问题,提出了一种改进的AdaBoost算法,与遗传算法相结合,产生了一种识别率高、泛化能力好的强分类器,文中称之为GA-AdaBoost算法。该算法首先训练多个支持向量机作为弱分类器,然后用AdaBoost算法将多个弱分类器组合成一个强分类器,在组合的同时采用遗传算法对各弱分类器的权值进行全局寻优。最后,通过试验与传统AdaBoost进行对比,表明了该算法具有识别率高和速度快的优越性。  相似文献   

17.
Multi-Class Learning by Smoothed Boosting   总被引:1,自引:0,他引:1  
AdaBoost.OC has been shown to be an effective method in boosting “weak” binary classifiers for multi-class learning. It employs the Error-Correcting Output Code (ECOC) method to convert a multi-class learning problem into a set of binary classification problems, and applies the AdaBoost algorithm to solve them efficiently. One of the main drawbacks with the AdaBoost.OC algorithm is that it is sensitive to the noisy examples and tends to overfit training examples when they are noisy. In this paper, we propose a new boosting algorithm, named “MSmoothBoost”, which introduces a smoothing mechanism into the boosting procedure to explicitly address the overfitting problem with AdaBoost.OC. We proved the bounds for both the empirical training error and the marginal training error of the proposed boosting algorithm. Empirical studies with seven UCI datasets and one real-world application have indicated that the proposed boosting algorithm is more robust and effective than the AdaBoost.OC algorithm for multi-class learning. Editor: Nicolo Cesa-Bianchi  相似文献   

18.
王玲娣  徐华 《计算机应用》2018,38(3):650-654
针对AdaBoost算法下弱分类器间的多样性如何度量问题以及AdaBoost的过适应问题,在分析并研究了4种多样性度量与AdaBoost算法的分类精度关系的基础上,提出一种基于双误度量改进的AdaBoost方法。首先,选择Q统计、相关系数、不一致度量、双误度量在UCI数据集上进行实验。然后,利用皮尔逊相关系数定量计算多样性与测试误差的相关性,发现在迭代后期阶段,它们都趋于一个稳定的值;其中双误度量在不同数据集上的变化模式固定,它在前期阶段不断增加,在迭代后期基本上不变,趋于稳定。最后,利用双误度量改进AdaBoost的弱分类器的选择策略。实验结果表明,与其他常用集成方法相比,改进后的AdaBoost算法的测试误差平均降低1.5个百分点,最高可降低4.8个百分点。因此,该算法可以进一步提高分类性能。  相似文献   

19.
张君昌  樊伟 《计算机工程》2011,37(8):158-160
为提高传统AdaBoost算法的集成性能,降低算法复杂度,提出2种基于分类器相关性的AdaBoost算法。在弱分类器的训练过程中,加入Q统计量进行判定。每个弱分类器的权重更新不仅与当前分类器有关,而且需要考虑到前面的若干分类器,以有效降低弱分类器间的相似性,剔除相似特征。仿真结果表明,该算法具有更好的检测率,同时可降低误检率,改进分类器的整体性能。  相似文献   

20.
从多个弱分类器重构出强分类器的集成学习方法是机器学习领域的重要研究方向之一。尽管已有多种多样性基本分类器的生成方法被提出,但这些方法的鲁棒性仍有待提高。递减样本集成学习算法综合了目前最为流行的boosting与bagging算法的学习思想,通过不断移除训练集中置信度较高的样本,使训练集空间依次递减,使得某些被低估的样本在后续的分类器中得到充分训练。该策略形成一系列递减的训练子集,因而也生成一系列多样性的基本分类器。类似于boosting与bagging算法,递减样本集成学习方法采用投票策略对基本分类器进行整合。通过严格的十折叠交叉检验,在8个UCI数据集与7种基本分类器上的测试表明,递减样本集成学习算法总体上要优于boosting与bagging算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号