首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
通过简单的两步溶液法对石墨烯进行羧基接枝和表面活性剂修饰, 并研究其电化学性能。研究结果表明, 与纯石墨烯(比电容50 F/g)相比, 表面活性剂本身并不能有效提高石墨烯的比电容(45 F/g), 羧基功能化可以将石墨烯的比电容提高至130 F/g。而羧基功能化和表面活性剂修饰双处理工艺能够将石墨烯的比电容提高到230 F/g, 且经800次充放电循环后其比电容仍然具有95%的保持率, 表明该材料具有良好的循环稳定性。因此, 调控石墨烯的表面化学特性对提高其电化学性能具有重要的意义。  相似文献   

2.
以单层石墨烯作为基底,对苯二胺与亚硝酸钠发生重氮化反应吸附石墨烯基底上生成对苯二胺功能化石墨烯。对苯二胺功能化石墨烯上的对苯胺作为初始位点用于苯胺的吸附和电化学聚合,生成共价接枝的石墨烯聚苯胺复合薄膜。这种复合材料具有良好的平面性能,在10 mV/s的扫速下循环伏安测试比容量达到305 F/g高于纯聚苯胺(216 F/g),非共价作用的石墨烯聚苯胺(106 F/g),体现良好的电化学性能。  相似文献   

3.
利用以苯胺与过硫酸铵制备的聚苯胺和改进的Hummers法制备的氧化石墨烯(GO)为原料,将聚苯胺分散于GO浊液中,再对GO进行还原,制备超级电容器电极材料石墨烯(RGO)/聚苯胺(PANI)复合材料(GRP),利用X射线衍射(XRD)对其结构进行了表征,并对复合材料电化学性能进行了测试。结果表明,复合材料展示良好比电容特性,同时又具有稳定电化学性能。GRP在0.1A/g的电流密度下比电容达到510F/g,1.0A/g电流密度下比电容为485F/g,经过2000次的充放电循环后比电容保持率为92%,即复合物比电容远大于石墨烯,在化学稳定性上远好于PANI。放电响应效率高,在电极中电解质离子容易扩散和迁移。  相似文献   

4.
本研究采用水热法制备了质量比为2∶1的CoFe2O4/石墨烯(CoFe2O4/graphene)复合物,利用XRD、FT-IR和TEM对样品的结构和形貌进行了表征,采用循环伏安法(CV)和恒电流充放电测试研究了其电化学性能。结果表明,CoFe2O4均匀的分布在石墨烯表面,粒径大约为10nm。在0.5A/g的电流密度下,比电容为105F/g。1000次循环后,电容保持率在90%以上。  相似文献   

5.
以钼酸铵作为钼源,硫脲作为硫源和还原剂,通过添加不同的表面活性剂(CTAB、SDBS和PVP),采用水热法成功合成了不同形貌和尺寸的二硫化钼。形貌和结构表征(XRD、Raman、SEM和TEM等)表明,通过改变反应体系中的表面活性剂可以控制二硫化钼样品的形貌与晶粒尺寸。电化学电容性能测试(循环伏安曲线、恒电流充放电测试和电化学交流阻抗谱)表明,二硫化钼的形貌与尺寸对其电容性能有显著影响。在电流密度为1A/g时,添加SDBS制备的片状二硫化钼初始比容量高达221.2F/g,经过500次循环后比容量仍保持在148F/g,表现出优异的循环稳定性,是一种性能优异的超级电容器电极材料。  相似文献   

6.
利用电弧法制备得到石墨烯(graphene)材料,并对其孔结构和电化学性能进行了研究.结果表明,利用电弧法制得的石墨烯具有发达、开放的介孔结构,比表面积为77.8m2/g,中孔率高达74.7%.作为电化学电容器电极材料,其在7mol/L的KOH电解液中比电容为12.9F/g,大电流性能优异,在200mV/s下的循环伏安曲线仍为矩形,交流阻抗谱的特征频率高达18.5Hz,体现出具有十分优异的倍率性能。  相似文献   

7.
氢氧化镍/还原氧化石墨烯复合物的超级电容性能   总被引:1,自引:0,他引:1  
黄振楠  寇生中  金东东  杨杭生  张孝彬 《功能材料》2015,(5):5084-5088,5094
采用共沉淀法制备了氢氧化镍/还原氧化石墨烯复合材料,并以此为电极研究了其超级电容性能。实验发现,六方氢氧化镍纳米片被成功插入到还原氧化石墨烯的层间,这有效抑制了还原氧化石墨烯和氢氧化镍的团聚,提高了电极的稳定性。当氢氧化镍和还原氧化石墨烯的质量比为5.5∶1时,显示了最佳的电化学性能:在-0.1~0.37V的电位窗口,1A/g的电流密度下,比电容高达1 036F/g;4A/g的电流密度下快速循环3 000次后,仍然保持70%的比电容。  相似文献   

8.
在70℃的酸性水溶液中,以氧化石墨烯为氧化剂,实现了吡咯的原位氧化聚合。采用傅里叶红外光谱(FTIR),X射线衍射(XRD),X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对复合材料的结构、形貌进行了表征;用循环伏安和恒流充放电对复合材料的电化学性能进行了研究。结果显示:吡咯吸附在氧化石墨烯的表面,发生了原位聚合反应;石墨烯剥离为片层,增大了复合材料的比表面积,聚吡咯/石墨烯复合材料显示了可观的电化学性能,在电流密度为0.5A/g时,电容量达到了695.5F/g,明显高于纯聚吡咯的比电容,循环稳定性也得到了提高。  相似文献   

9.
以氧化石墨烯为原料,通过水热反应和高温焙烧过程制备了三维石墨烯柱状体材料。采用机械力学测试方法分析三维石墨烯的可压缩性能,将其作为超级电容器的电极材料测试其电化学性能。结果表明,三维石墨烯呈多孔网状结构,具有良好的可压缩性能和机械性能。电极片厚度为2 mm,铝塑外包尺寸为5 cm×6 cm的对称超级电容器在电流密度为0.1 A/g下比电容为175 F/g,在电流密度为1 A/g下充放电循环10 000次后比电容保持率为81.9%。在加载不同大小压力压缩状态下,其保持了良好的电容性能。  相似文献   

10.
采用水热法以钼酸铵、氧化石墨烯和硫脲作为原料制备得到不同石墨烯含量的MoS_2/石墨烯复合材料。利用XRD、Raman、SEM、TEM和电化学测试对复合材料的形貌、结构和电化学性能进行了表征。结果表明,氧化石墨烯和钼酸根离子被成功地还原成MoS_2/石墨烯复合材料,同时MoS_2纳米片均匀地分散在石墨烯表面上。当氧化石墨烯为800mg时复合材料的电化学性能最佳,在电流密度为1A/g时,比容量高达310F/g,经过500次循环后比容量仍保持在230F/g。以上研究结果说明,石墨烯片层的介入有效地阻碍了MoS_2纳米片的堆叠,提高复合材料的比容量和循环稳定性。  相似文献   

11.
超级电容器用石墨烯极片的制备和性能   总被引:1,自引:0,他引:1  
袁美蓉  赵方辉  刘伟强  朱永法  王臣 《功能材料》2013,(19):2810-2813,2818
以石墨粉为原料,通过简便的氧化还原法制备了石墨烯。将石墨烯极片在有机电解液体系中组装成超级电容器。利用XRD、SEM对制备的石墨烯电极进行物相和形貌分析。采用恒电流充放电、循环伏安和交流阻抗对所制备超级电容器的电容性能进行了研究。结果表明,石墨烯电极超级电容器比天然石墨制备的超级电容器的比电容有了明显的提高;在电流密度为200mA/g,电压区间为1.25~2.5V下循环888次后比电容保持在45.5F/g,容量保持率在85.5%,表明石墨烯材料制备的电容器具有较好的充放电循环性能。  相似文献   

12.
通过加入十二烷基苯磺酸钠制备聚苯胺/聚乙烯醇/磺化石墨烯(PANI/PVA/S-GNS)导电复合材料,采用红外光谱、X射线衍射、扫描电子显微镜对其结构和形貌进行表征;通过溶解性能测试,表明十二烷基苯磺酸钠的加入,可有效降低PANI的团聚,提高复合材料的溶解性能;通过循环伏安和交流阻抗对其电化学性能进行测试,结果显示少量S-GNS的加入就能提高复合材料的电性能,在扫描速率为50 mV/s时,PANI/PVA/S-GNS的比电容为661.2 F/g,远大于比电容为354.3 F/g的PANI/PVA。  相似文献   

13.
以石墨粉为原料,通过简便的氧化还原法制备了石墨烯。将石墨烯极片在有机电解液体系中组装成超级电容器。利用XRD、SEM对制备的石墨烯电极进行物相和形貌分析。采用恒电流充放电、循环伏安和交流阻抗对所制备超级电容器的电容性能进行了研究。结果表明,石墨烯电极超级电容器比天然石墨制备的超级电容器的比电容有了明显的提高;在电流密度为200mA/g,电压区间为1.25~2.5V下循环888次后比电容保持在45.5F/g,容量保持率在85.5%,表明石墨烯材料制备的电容器具有较好的充放电循环性能。  相似文献   

14.
通过加入十二烷基苯磺酸钠制备聚苯胺/聚乙烯醇/磺化石墨烯(PANI/PVA/S-GNS)导电复合材料,采用红外光谱、X射线衍射、扫描电子显微镜对其结构和形貌进行表征;通过溶解性能测试,表明十二烷基苯磺酸钠的加入,可有效降低PANI的团聚,提高复合材料的溶解性能;通过循环伏安和交流阻抗对其电化学性能进行测试,结果显示少量S-GNS的加入就能提高复合材料的电性能,在扫描速率为50 mV/s时,PANI/PVA/S-GNS的比电容为661.2 F/g,远大于比电容为354.3 F/g的PANI/PVA。  相似文献   

15.
片状聚吡咯/氧化石墨烯复合材料的制备及电化学性能   总被引:1,自引:0,他引:1  
通过原位聚合在低温条件下(-10℃)制备具有片状微结构的聚吡咯(PPy)/氧化石墨烯(GO)复合材料,利用傅里叶红外光谱仪(FT-IR),扫描电子显微镜(SEM)对复合材料进行结构表征的基础上,利用循环伏安(CV)、恒流充放电(GC)、电化学阻抗技术(EIS)测试复合材料的电化学性能。FT-IR结果表明复合材料中GO与PPy存在相互作用;SEM结果表明复合材料显示为亚微米片状结构形貌;CV、GC、EIS电化学分析表明,与纯聚吡咯及氧化石墨烯相比,复合材料显示出优越的电容特性。当电流密度保持在1 A/g时,复合材料的比电容可达319 F/g,比GO(9 F/g)和PPy(167 F/g)的比电容都要高,该复合材料可用作潜在的超级电容器电极材料。  相似文献   

16.
吴慧  马拥军  朱东升  裴重华 《功能材料》2013,44(8):1073-1076,1080
将氧化石墨烯(GO)与碳化细菌纤维素(CBC)(7∶3,质量比)超声复合,用水合肼原位还原制得碳化细菌纤维素/石墨烯(CBC/CCG)复合材料。利用动态力显微镜(DFM)、扫描显微镜(SEM)、X射线衍射(XRD)、激光拉曼光谱(Raman)对其形貌、结构进行表征。并通过循环伏安、交流阻抗、恒流充放电测试等方法比较了CBC/CCG复合材料和石墨烯(CCG)作为超级电容器电极在6mol/L KOH溶液中的电容性能。结果表明,在10mA/cm2电流密度下,CCG比容量为87.79F/g,CBC/CCG复合材料的比容量达到168.99F/g,CBC/CCG复合材料的电化学性能要优于CCG,具有良好应用前景。  相似文献   

17.
以核桃壳为原料,经水热炭化-KOH活化制备活性炭,并将其用作超级电容器电极材料。采用低温氮气吸附、扫描电镜(SEM)及X射线光电子能谱(XPS)等手段系统研究核桃壳活性炭的微观结构及表面化学性质,并利用恒流充放电、循环伏安等探讨其对应电极材料的电化学性能。研究表明,在碱碳比为3∶1、活化温度为800℃、活化时间为1h的条件下,核桃壳水热炭经KOH活化可制备出比表面积为1 236m2/g、总孔容为0.804cm3/g、中孔比例为38.3%的活性炭。该核桃壳活性炭用作电极材料在KOH电解液中具有优异的电化学特性,其在50mA/g电流密度下的比电容可达251F/g,5 000mA/g电流密度下的比电容为205F/g,且具有良好的循环稳定性,1 000次循环后比电容保持率达92.4%,是一种比较理想的超级电容器电极材料。核桃壳活性炭优异的电化学性能与其相互贯通的层次孔结构和独特的含氧表面密切相关。  相似文献   

18.
采用一种改进的方法制备了类石墨烯的Ti_3C_2T_x二维材料。首先采用氢氟酸刻蚀Ti_3AlC_2,然后向插层溶剂二甲亚砜中添加表面活性剂十六烷基三甲基溴化铵协助二甲亚砜共同插层,最后经超声处理制备Ti_3C_2T_x。XRD测试表明,由于表面活性剂的协助插层作用,插层剂分子更容易进入Ti_3C_2T_x层间,显著增加其层间距,减小层间的相互作用力,便于其剥离。氮气吸脱实验证实该方法制备的Ti_3C_2T_x具有更高的比表面积和孔容。电化学测试表明,由制备的Ti_3C_2T_x组装成的对称性电容器具有更高的比电容,在0.5 A/g电流密度下的比电容达75.0 F/g,当充电电流增加至4 A/g时,其电容维持在57.0 F/g。在1 A/g的电流密度下,经过2 500次的充放电循环后,制备的Ti_3C_2T_x材料的比电容为61.5 F/g,循化稳定率达87.0%。  相似文献   

19.
热膨胀制备含氧官能团化的石墨烯及其电化学电容性能   总被引:1,自引:1,他引:0  
在空气气氛、150℃的条件下直接热处理氧化石墨获得含氧官能团化的石墨烯。采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、场发射扫描电镜(FESEM)和透射电镜(TEM)对其结构和形貌进行表征。利用循环伏安(CV)、恒流充放电技术对其电化学性能进行测试。结果表明,所制备的含氧官能团化的石墨烯表现出优良的电容性能,其单电极比电容值高达275F/g,且具有良好的倍率特性和循环性能。  相似文献   

20.
石墨烯纳米卷是一种具有开放式螺旋状纳米卷结构的管状石墨烯。以石墨烯纳米卷为模板,利用原位聚合的方法,将聚苯胺生长在石墨烯纳米卷表面。通过对材料形貌进行表征,发现聚苯胺均匀地分布在石墨烯纳米卷表面。分别对3种不同单体浓度的聚苯胺复合石墨烯纳米卷进行电化学性能考察,结果发现石墨烯纳米卷和聚苯胺产生的协同效应使得复合卷在继承石墨烯纳米卷良好的倍率特性同时显著地提升了比电容,在1 A/g时比电容可达320 F/g,100A/g时仍可以保持92.1%的初始电容,为制备高比容、快速充放电的石墨烯纳米卷基超级电容器奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号