首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
S变换时频谱SVD降噪的冲击特征提取方法   总被引:1,自引:0,他引:1  
为了从滚动轴承故障振动信号中提取出冲击特征,以进行轴承故障诊断,提出基于S变换时频谱奇异值分解(SVD)的信号降噪方法。S变换是一种信号时频表示方法,适合于处理与分析非平稳的冲击特征信号。在SVD降噪过程中,数据矩阵由信号的S变换谱系数构成;奇异值序列的置零阈值位置坐标可由奇异值差分谱最前面部分峰值群的最后一个峰值点序号来确定。最后对降噪的数据矩阵进行S逆变换,获得信号的时域冲击特征。仿真研究表明,基于S变换时频谱的SVD降噪方法可以成功地从低信噪比信号中提取出周期性的冲击特征。将本方法用于处理与分析滚动轴承故障振动信号,根据所提取出的冲击特征出现频率,能够方便有效地实现轴承相关故障的诊断。  相似文献   

2.
基于时间-小波能量谱的齿轮故障诊断   总被引:4,自引:1,他引:3       下载免费PDF全文
振动信号中的冲击现象及其频率特征是诊断齿轮局部损伤故障的重要依据之一。针对齿轮故障特征提出了一种时间-小波能量谱信号处理方法,它能够有效提取振动信号中冲击成分的时域和频域特征。利用时间-小波能量谱方法分析了正常、磨损、断齿等三种状态的齿轮箱振动信号,并与传统频谱分析方法进行相比。结果表明:时间-小波能量谱不仅可以有效提取故障特征,识别出齿轮箱的故障存在,而且可以清晰地分辨出故障类型及故障元件。  相似文献   

3.
与恒转速相比,机械中普遍存在的变转速工作模式使滚动轴承的故障诊断更加困难;另外变转速条件下的常规方法—阶比分析存在误差以及计算效率方面的问题,因此,提出了基于故障特征系数模板的滚动轴承故障诊断方法。该方法主要包括六部分:(1)根据目标轴承的几何参数计算其故障特征系数以设定模板;(2)利用快速谱峭度滤波算法对滚动轴承振动信号进行滤波;(3)根据Hilbert变换以及短时傅里叶变换计算滤波信号的包络时频图;(4)通过峰值搜索算法从滤波信号的包络时频图中提取瞬时故障特征频率趋势线;(5)根据转速脉冲信号计算滚动轴承的转速曲线;(6)瞬时故障特征频率与瞬时转频相比获取瞬时故障特征系数,进而通过故障特征系数模板实现滚动轴承的故障诊断。随即以变转速情况下的故障轴承仿真信号以及实测的外圈故障、内圈故障和健康轴承的振动信号为例验证了该算法的有效性。  相似文献   

4.
由于行星轴承振动信号传递路径的时变性,且行星齿轮箱中齿轮啮合振动信号较强,导致行星轴承故障特征提取较为困难。为此,提出了一种基于振动信号分离的行星轴承故障特征提取方法。该方法首先采用阶比分析技术将原始振动信号进行等角度采样;每当行星架旋转一周,采用Tukey窗进行加窗截取,按照啮合齿序重新拼接,构造振动分离信号。再采用离散随机分离从振动分离信号中提取行星轴承故障分量;最后进行包络谱分析提取故障特征。行星轴承内圈故障实测信号分析表明,该方法能有效提取行星轴承故障特征。  相似文献   

5.
针对齿轮启停过程中故障振动信号的调频特性,提出了基于广义解调时频分析和瞬时频率计算的阶次谱方法,并将其应用于齿轮瞬态信号的分析。广义解调时频分析是一种新的时频分析方法,它可以将多分量的信号分解为若干个瞬时频率具有物理意义的单分量信号,每个单分量信号可以是调幅-调频信号,因此非常适合处理多分量的调幅-调频信号。而当齿轮发生故障时,其启停过程中的振动信号就表现为多分量的调幅-调频特征。在基于广义解调时频分析和瞬时频率计算的阶次谱方法中,首先采用广义解调时频分析方法将齿轮瞬态信号分解为若干个单分量信号,然后计算各个分量的瞬时频率,再对其瞬时频率信号进行重采样,最后对重采样信号进行频谱分析得到阶次谱,从而提取齿轮振动信号的故障特征,判断齿轮的工作状态。仿真信号和实验信号的分析结果表明了该方法的有效性。  相似文献   

6.
基于包络S变换时频图像提取齿轮故障特征   总被引:1,自引:0,他引:1       下载免费PDF全文
齿轮故障振动信号中调幅和调频现象同时存在,其频谱包括以啮合频率及其谐波为载频,齿轮所在轴转频及其谐波为调制频率产生的调制边频带。针对齿轮故障振动信号特征提取困难的问题,提出一种基于包络分析和S变换时频图像相结合的故障特征提取方法。通过变速器齿轮故障模拟实验,采集齿轮正常、轻微磨损和严重磨损时的稳态振动信号,对其进行Hilbert变换得到信号的包络,然后对包络信号进行S变换,得到包络的时频图像的等高线灰度图像,计算图像的灰度共生矩阵及其统计特征量,提取齿轮故障特征。试验结果表明:该方法能有效提取齿轮故障特征。  相似文献   

7.
基于谱相关的齿轮振动监测技术研究   总被引:2,自引:2,他引:0  
毕果  陈进 《振动与冲击》2009,28(7):17-21
摘要:齿轮振动信号的特征循环频率具有谐频成分,谐频循环频率簇对应的谱线相关性综合反映了系统中的某种啮合振动或调制现象。以此理论为基础,本文提出了啮合振动监测因子和调制监测因子两种累积能量因子,利用单一传感器采集得到的信号,以全频段信息为依据,进行振动信息的抽取和剥离,实现针对性的齿轮振动监测。实例分析结果证实了基于谱相关的状态监测技术具有较高的灵敏性,能够初步判断系统中的故障所在。  相似文献   

8.
旋转机械非平稳振动信号的时频分析比较   总被引:8,自引:2,他引:6  
信号分析与处理是机械故障监测与诊断中故障提取的常用方法,传统的振动故障分析方法难以满足频率随时间变化的非平稳信号的要求,联合时频分析是非平稳信号比较有力的分析工具。以转子实验台的典型振动故障信号为研究对象,分析研究了几种时频分析方法如STFT、Wigner-Ville分布、小波变换和Hilbert-Huang变换。对比结果表明:STFT和Wigner-Ville分布的时频分辨率是矛盾的,易出交叉项或使信号变得微弱;小波分解会出现多余信号;Hilbert-Huang变换的时频分析能够直观检测信号中的微弱奇异成分,清楚给出时频分布情况,为旋转机械状态监测和故障诊断提供了新的手段。  相似文献   

9.
为降低齿轮箱振动信号频谱分析与故障识别的难度,提出了基于频谱核密度估计与密度函数相似性比较的齿轮箱故障诊断方法。首先针对齿轮箱的每一种故障状态采集多组振动信号,利用核密度估计方法对每组振动信号的频谱求取密度函数;然后选取一部分密度函数进行算术平均化,得到对应故障状态下的标准密度函数;最后根据测试振动信号频谱密度函数与各种故障状态标准密度函数之间的余弦相似度值与相关系数值,对齿轮箱的故障状态进行识别。试验结果表明:与振动信号的频谱相似性比较方法相比,所提方法对于齿轮箱故障状态的判别具有更高的准确率,同时对应于齿轮箱的不同故障状态,相关系数比余弦相似度显示出更大的差异性,具有更好的适用性。  相似文献   

10.
罗毅  甄立敬 《振动与冲击》2015,34(3):210-214
为实现风电机组齿轮箱及时有效地监测和维护,提出基于小波包与倒频谱分析的风电机组齿轮箱齿轮裂纹诊断方法。该方法针对齿轮裂纹振动信号为转速频率对啮合频率及其倍频调制的特点,利用小波包分解来识别振动信号中的故障特征,通过小波包频带能量监测得到故障部位的啮合频率范围;考虑到倒频谱可以分离和提取难以识别的密集调制信号的周期成分,基于倒频谱识别故障部位的转速频率,综合利用两种频谱分析方法得到的啮合频率和转速频率,能诊断故障部位和类型。实验研究表明,该方法能精确地诊断齿轮裂纹故障,并可以实现对风电机组齿轮在复杂环境中退化状态的监测,预防断齿等重大故障的发生。  相似文献   

11.
基于滑动峰态算法的信号弱冲击特征提取及应用   总被引:3,自引:3,他引:0  
机械故障振动信号中往往含有故障引起的弱冲击成分,冲击信号具有显著的非高斯特性,而零时滞四阶累积量即峰态能够描述信号偏离高斯分布的程度;基于峰态这一特性,本文提取一种基于滑动峰态算法的弱冲击特征提取方法,首先对原信号进行滑动峰态计算,获得一个新的峰态时间序列,然后对该峰态时间序列进行傅立叶变换,提取出信号中冲击成分的频率特征。通过强背景信号及噪声环境下弱冲击特征提取的仿真研究,证明了该方法具有很好的冲击特征提取能力。以实测齿轮断齿信号分析结果证明了该方法的有效性。  相似文献   

12.
滚动轴承故障信号是一种典型的周期性冲击信号,如何从含有强噪声的振动信号中有效的提取出冲击特征信号是轴承故障诊断的关键。基于数学形态学理论,本文提出了一种自适应多尺度形态梯度变换(AMMG)方法,它能够在有效抑制噪声的同时很好的保留信号的细节。仿真信号和实测轴承故障信号的分析结果表明,与常用的包络解调分析和近来提出的另一种基于数学形态学的形态闭变换方法相比析,自适应多尺度形态梯度变换具有更强的噪声抑制和脉冲提取能力,并且计算简单、快速,为滚动轴承故障特征提取提供了一种有效的方法。  相似文献   

13.
针对机械早期故障引起的冲击特征微弱,易受强背景信号和噪声的干扰而难以提取的问题,提出一种奇异值分解(Singular Value Decomposition,SVD)差分谱与S变换相结合的微弱冲击特征提取方法。将原始信号构造成Hankel矩阵,采用SVD对重构矩阵进行分解;利用奇异值差分谱确定降噪阶次进行降噪;采用S变换对降噪后的信号进行时频分析,提取信号中的微弱冲击特征信息。通过数值仿真和实际轴承故障数据的对比,表明该方法可有效辨别轴承振动信号中故障引起的早期微弱冲击特征,为轴承故障诊断提供先验信息。  相似文献   

14.
提纯旋转机械设备故障振动信号中的冲击特征,可以有效地实现相关故障的诊断。利用S变换适合于处理冲击特征信号的特点,提出基于S变换谱阈值去噪的冲击特征提取方法。先将信号进行S变换,得到其时频谱。考虑到此S变换谱为一复数矩阵,故而根据谱系数的模值大小进行阈值去噪。去噪过程中分别采用了基本的硬阈值函数和软阈值函数。对于最优阈值的估计,以所提出的改进风险函数为评价标准,利用步长迭代算法在零到系数最大模值的区间内获取。最后将去噪后的时频谱进行S逆变换,重构得到时域冲击特征。仿真信号与滚动轴承故障振动信号的处理结果表明,利用所获取的最优阈值,S变换谱阈值去噪方法能够从噪声混合信号中提取出冲击特征,从而实现相关故障的诊断。  相似文献   

15.
在 STFT 的基础上提出了一种时间重分配多同步压缩变换(TMSST)结合相关峭度的柔性薄壁轴承故障特征提取方法。该方法通过对 STFT 结果使用压缩算子提高其时频聚集性;结合相关峭度准则选择最佳频率点处的脉冲特征;对脉冲特征分析得到其冲击频率特性。将所述方法用于柔性薄壁轴承内外圈故障信号特征提取,并将其与 S 变换结合相关峭度进行对比,结果证明所提方法在成功提取故障特征的同时能更好地反映故障特征频率的时变性,为轴承故障诊断提供了一种时频分析的新视角。  相似文献   

16.
针对滚动轴承故障冲击信号周期性强且易被强烈的背景噪声所淹没的特点,提出了基于EEMD和自相关函数峰态系数的轴承故障诊断方法。首先,对采集到的复杂振动信号进行EEMD分解,根据自相关函数峰态系数和峭度准则重构IMF分量以突出故障特征信息;然后,利用谱峭度自动确定带通滤波器的最佳中心频率和带宽;最后,将滤波后的信号进行包络解调分析并与理论故障特征频率对比。通过轴承故障的仿真和实验研究,验证了该方法的有效性和可行性。  相似文献   

17.
变转速工作模式使得本来就互相干扰、彼此联系的滚动轴承复合故障特征的提取更加困难。为此提出了基于迭代广义解调算法的变转速滚动轴承复合故障特征提取方法。该方法根据复合故障轴承信号包络时频谱中代表故障特征频率的时频曲线的突出性,结合迭代广义解调算法可以将特定时频曲线转换成平行于时间轴的直线这一特点,直接对滚动轴承振动信号中的特定成分进行分析和提取。整个算法由以下四部分组成:对同步测取的故障轴承转速脉冲信号进行处理得到转频曲线,根据转频曲线以及目标轴承的故障特征系数确定迭代广义解调算法需要的相位函数;其次,对故障轴承信号进行包络分析获取包络信号;根据计算的相位函数对故障轴承包络信号进行迭代广义解调;对解调信号进行频谱分析,通过分析频谱中独立峰的位置对滚动轴承的健康状况进行判断。仿真与实验结果表明,该算法可以消除转速变化对滚动轴承复合故障特征的影响,有效实现复合故障特征的识别和提取。  相似文献   

18.
汽轮机油膜涡动是滑动轴承失稳而产生的自激振动,其振动频率主要表征为转子转频的一半或略小。当油膜涡动频率等于转子一阶临界转速时会导致振动加剧,进而对汽轮机的稳定运行产生严重影响。Gabor变换是一种可逆的联合时频分布方法,其逆变换具有时域信号重构的能力。基于Gabor变换对850 MW汽轮机振动信号进行时频分析,显示反映轴系不稳定的半速涡动成分,进一步对该成分进行时频带通滤波,并基于Gabor逆变换予以时间重构,获取半速涡动成分的峰峰值量化指标,为汽轮机轴承油膜涡动故障提供诊断依据。  相似文献   

19.
针对齿轮故障信号分析,提出采用分数阶时频LBP谱表达齿轮故障信号的时频特征。首先为克服S变换对高频信号的时频分辨性能差的不足,基于分数阶Fourier变换良好的时频旋转特性设计了一种分数阶S变换,用于获取齿轮信号的二维时频表示;然后引入局部二值模式(LBP)算子,将LBP算子作用于分数阶S变换时频图,提取分数阶时频LBP谱;最后结合"uniform"模式LBP的概念和类内类间距准则,对分数阶时频局部二值模式谱进行特征优选,用于表达齿轮故障特征。对5种不同状态的齿轮信号进行了分析,结果表明优选后的分数阶时频LBP谱具有较强的特征描述能力,是齿轮故障信号的一类新的有效特征参数。  相似文献   

20.
针对时变工况风电机组齿轮箱振动信号受噪声干扰和频率模糊问题,通过研究无转速下风电机组齿轮箱振动信号与转频波动规律间的联系,提出了基于VMD-SET时变工况的风电机组齿轮箱无转速计阶次跟踪方法。该方法利用变分模态分解(VMD)滤波,利用同步提取变换(SET)对齿轮箱振动信号时频分析,分别从轴承故障时域振动信号中初步提取故障特征频率趋势,从正常齿轮啮合调制时域振动信号中提取啮合频率时频脊线,进一步利用精细化时频脊线交叉解耦优化瞬时频率提取效果,再用提取的转速曲线对轴承故障振动信号进行阶次跟踪,从角域阶次谱中得到故障特征阶次的单根谱线。通过仿真及实验验证了所提方法的优越性和有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号