首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 808 毫秒
1.
This paper describes a facile method for coating Ag nanowires with uniform, ferromagnetic sheaths made of polycrystalline Ni. A typical sample of these core/sheath nanowires had a saturation magnetization around 33 emu g?1. We also demonstrated the use of this magnetic property to align the nanowires by simply placing a suspension of the nanowires on a substrate in a magnetic field and allowing the solvent to evaporate. The electrical conductivity of these core/sheath nanowires (2 × 103 S cm?1) was two orders of magnitude lower than that of bulk Ag (6.3 × 105 S cm?1) and Ni (1.4 × 105 S cm?1). This is likely caused by the transfer of electrons from the Ag core to the Ni sheath due to the difference in work function between the two metals. The electrons are expected to experience an increased resistance due to spin‐dependent scattering caused by the randomized magnetic domains in the polycrystalline, ferromagnetic Ni sheath. Studies on the structural changes to the Ni coating over time under different storage conditions show that storage of the nanowires on a substrate under ambient conditions leads to very little Ni oxidation after 6 months. These Ag/Ni core/sheath nanowires show promise in areas such as electronics, spintronics, and displays.  相似文献   

2.
Single-crystal tin selenide (SnSe), a record holder of high-performance thermoelectric materials, enables high-efficient interconversion between heat and electricity for power generation or refrigeration. However, the rigid bulky SnSe cannot satisfy the applications for flexible and wearable devices. Here, a method is demonstrated to achieve ultralong single-crystal SnSe wire with rock-salt structure and high thermoelectric performance with diameters from micro- to nanoscale. This method starts from thermally drawing SnSe into a flexible fiber-like substrate, which is polycrystalline, highly flexible, ultralong, and mechanically stable. Then a CO2 laser is employed to recrystallize the SnSe core to single-crystal over the entire fiber. Both theoretical and experimental studies demonstrate that the single-crystal rock-salt SnSe fibers possess high thermoelectric properties, significantly enhancing the ZT value to 2 at 862 K. This simple and low-cost approach offers a promising path to engage the fiber-shaped single-crystal materials in applications from 1D fiber devices to multidimensional wearable fabrics.  相似文献   

3.
SnSe是一种潜在的极具应用前景的热电材料。采用机械合金化结合放电等离子烧结的方法制备了Ag掺杂的Sn1-xAgxSe (0.005≤x≤0.03)多晶块体热电材料, 并借助XRD、SEM、电热输运测试系统研究了其物相组成、微结构与电热输运性能。XRD分析结果表明, 少量Ag(0.005≤x≤0.01)掺杂仍然能够成功制备出单相斜方结构SnSe化合物, 但随着Ag掺杂量的增加, 基体中出现SnAgSe2第二相, 且第二相含量逐渐增加。掺杂Ag大幅度提高了载流子浓度, 从而使材料的综合电输运性能(功率因子)显著提高, 当Ag掺杂量x=0.02时, 功率因子提高至4.95×10-4 W/(m·K2), 较未掺杂SnSe样品提高了36%。尽管掺杂样品的热导率均有小幅升高, 无量纲热电优值(ZT)仍获得一定改善。当Ag掺杂量x=0.02时, Sn0.98Ag0.02Se成分样品具有较高的热电优值, 并在823 K附近达到最高值0.82。  相似文献   

4.
We synthesized the vertical-structured LED (VLED) using nano-scaled Pt between p-type GaN and Ag-based reflector. The metallization scheme on p-type GaN for high reflectance and low was the nano-scaled Pt/Ag/Ni/Au. Nano-scaled Pt (5 A) on Ag/Ni/Au exhibited reasonably high reflectance of 86.2% at the wavelength of 460 nm due to high transmittance of light through nano-scaled Pt (5 A) onto Ag layer. Ohmic behavior of contact metal, Pt/Ag/Ni/Au, to p-type GaN was achieved using surface treatments of p-type GaN prior to the deposition of contact metals and the specific contact resistance was observed with decreasing Pt thickness of 5 A, resulting in 1.5 x 10(-4) ohms cm2. Forward voltages of Pt (5 A)/Ag/Ni contact to p-type GaN showed 4.19 V with the current injection of 350 mA. Output voltages with various thickness of Pt showed the highest value at the smallest thickness of Pt due to its high transmittance of light onto Ag, leading to high reflectance. Our results propose that nano-scaled Pt/Ag/Ni could act as a promising contact metal to p-type GaN for improving the performance of VLEDs.  相似文献   

5.
Tin selenide (SnSe) has attracted much attention in the field of thermoelectrics since the discovery of the record figure of merit (ZT) of 2.6 ± 0.3 along the b‐axis of the material. The record ZT is attributed to an ultralow thermal conductivity that arises from anharmonicity in bonding. While it is known that nanostructuring offers the prospect of enhanced thermoelectric performance, there have been minimal studies in the literature to date of the thermoelectric performance of thin films of SnSe. In this work, preferentially orientated porous networks of thin film SnSe nanosheets are fabricated using a simple thermal evaporation method, which exhibits an unprecedentedly low thermal conductivity of 0.08 W m?1 K?1 between 375 and 450 K. In addition, the first known example of a working SnSe thermoelectric generator is presented and characterized.  相似文献   

6.
A systematic colloidal synthesis approach to prepare tin(II, IV) chalcogenide nanocrystals with controllable valence and morphology is reported, and the preparation of solution‐processed nanostructured thermoelectric thin films from them is then demonstrated. Triangular SnS nanoplates with a recently‐reported π‐cubic structure, SnSe with various shapes (nanostars and both rectangular and hexagonal nanoplates), SnTe nanorods, and previously reported Sn(IV) chalcogenides, are obtained using different combinations of solvents and ligands with an Sn4+ precursor. These unique nanostructures and the lattice defects associated with their Sn‐rich composition allow the production of flexible thin films with competitive thermoelectric performance, exhibiting room temperature Seebeck coefficients of 115, 81, and 153 μV K?1 for SnS, SnSe, and SnTe films, respectively. Interestingly, a p‐type to n‐type transition is observed in SnS and SnSe due to partial anion loss during post‐synthesis annealing at 500 °C. A maximum figure of merit (ZT) value of 0.183 is achieved for an SnTe thin film at 500 K, exceeding ZT values from previous reports on SnTe at this temperature. Thus, a general strategy to prepare tin(II) chalcogenide nanocrystals is provided, and their potential for use in high‐performance flexible thin film thermoelectric generators is demonstrated.  相似文献   

7.
Carbon nanotubes (CNT) decorated with Ni and Ag performed by electroless plating, and the effect of Ni and Ag nanoparticles and coating distribution on field emission of CNT are studied. The chemical composition, microstructure of CNT/Ni and CNT/Ag nanocomposites are characterized by an energy dispersion X-ray spectroscope (EDS), a transmission electron microscope and a scanning electron microscope. The field emission properties of CNT/Ni and CNT/Ag cathodes are measured using a diode structure under a pressure of 10?5 Pa. The experimental results show that fine and well-dispersed metallic nanoparticles and discontinuous coating of Ni and Ag on the CNT surface can be obtained by electroless plating. Moreover, the enhanced field emission properties of CNT decorated with Ni and Ag can be obtained by lowering the work function of emitters and reducing the contact resistance between cathode and substrate. The field enhancement factors as high as 24264 of CNT/Ni and 25565 of CNT/Ag emitters can be improved by the distributed nano-sized Ni and Ag formed on the CNT surface.  相似文献   

8.
Reduced dimension is one of the effective strategies to modulate thermoelectric properties. In this work, n-type PbSe/SnSe superlattices with quantum-well (QW) structure are fabricated by pulsed laser deposition. Here, it is demonstrated that the PbSe/SnSe multiple QW (MQW) shows a high power factor of ≈25.7 µW cm?1 K?2 at 300 K, four times larger than that of PbSe single layers. In addition, thermal conductivity falls below 0.32 ± 0.06 W m?1 K?1 due to the phonon scattering at interface when the PbSe well thickness is confined within the scale of phonon mean free path (1.8 nm). Featured with ultrahigh power factor and ultralow thermal conductivity, ZT at room temperature is significantly increased from 0.14 for PbSe single layer to 1.6 for PbSe/SnSe MQW.  相似文献   

9.
W Hou  C Stark  S You  L Zhao  T Detchprohm  C Wetzel 《Applied optics》2012,51(23):5596-5600
In search of a better transparent contact to p-GaN, we analyze various metal/indium-tin-oxide (ITO) (Ag/ITO, AgCu/ITO, Ni/ITO, and NiZn/ITO) contact schemes and compare to Ni/Au, NiZn/Ag, and ITO. The metal layer boosts conductivity while the ITO thickness can be adjusted to constructive transmission interference on GaN that exceeds extraction from bare GaN. We find a best compromise for an Ag/ITO (3 nm/67 nm) ohmic contact with a relative transmittance of 97% of the bare GaN near 530?nm and a specific contact resistance of 0.03 Ω·cm2. The contact proves suitable for green light-emitting diodes in epi-up geometry.  相似文献   

10.
使用粉末烧结SnSe合金靶高真空磁控溅射制备掺杂Ag的SnSe热电薄膜,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和能谱仪(EDS)等手段分析薄膜的相组成、表面形貌、截面形貌、微区元素含量和元素分布,利用塞贝克系数/电阻分析系统LSR-3测量沉积薄膜的电阻率和Seebeck系数,研究了不同Ag含量SnSe薄膜的热电性能。结果表明,采用溅射技术可制备出正交晶系Pnma结构的SnSe相薄膜,掺杂的Ag在薄膜中生成了纳米Ag3Sn。与未掺杂Ag相比,掺杂Ag的SnSe薄膜其电阻率和Seebeck系数(绝对值,下同)明显减小。并且在一定掺杂范围内,掺杂Ag越多的薄膜电阻率和Seebeck系数越小。未掺杂Ag的SnSe薄膜样品,其Seebeck系数较大但是电阻率也大,因此功率因子较小。Ag掺杂量(原子分数)为7.97%的样品,因其Seebeck系数绝对值较大而电阻率适当,280℃时的功率因子最大(约为0.93 mW·m-1·K-2),比未掺杂Ag的样品(PF=0.61 mW·m-1·K-2)高52%。掺杂适量的Ag能提高溅射沉积的SnSe薄膜的热电性能(功率因子)。  相似文献   

11.
Porous silicon has been considered as a promising optoelectronic material for developing a variety of optoelectronic devices and sensors. In the present study, the electrical properties and metallurgical process of the screen-printed Ag metallization formed on the porous silicon surface of the silicon solar cell have been investigated. The contact structure consists of thick-film Ag metal contact patterned on the top of the porous silicon surface. The sintering process consists of a rapid firing step at 750–825 °C in air ambient. It results in the formation of a nearly perfect contact structure between the Ag metal and porous silicon/p-Si structure that forms the top metalization for the screen-printed silicon solar cells. The SEM picture shows that Ag metal firmly coalesces with the silicon surface with a relatively smooth interfacial morphology. This implies that high temperature fire-through step has not introduced any signs of adverse effect of junction puncture or excessive Ag indiffusion, etc. The three-point probe (TPP) method was applied to estimate the specific contact resistance, ρ c (Ω-cm2) of the contact structure. The TPP measurement shows that contact structure has excellent ohmic properties with ρ c = 1.2 × 10−6 Ω-cm2 when the metal contact sintered at 825 °C. This value of the specific contact resistance is almost three orders of magnitude lower than the corresponding value of the ρ c = 7.35 × 10−3 Ω-cm2 obtained for the contact structure sintered at 750 °C. This improvement in the specific contact resistance indicates that with increase in the sintering temperature, the barrier properties of the contact structure at the interface of the Ag metal and porous silicon structure improved which in turn results a lower specific contact resistance of the contact structure.  相似文献   

12.
Characterization of sputter deposited Au/Ni/Al multilayers on Si substrates   总被引:1,自引:0,他引:1  
D. Resnik  D. Vrta?nik  M. Mo?ek  S. Amon 《Vacuum》2009,84(1):224-227
Multilayered Au/Ni/Al thin film metallization deposited by DC sputtering on n+Si substrates has been investigated. AES depth profiling was performed to reveal the concentration depth profiles of the Au/Ni/Al multilayers before and after annealing at different temperatures in the range 623-723 K. It was found that Ni aluminide layers begin to form during heat treatments at temperatures above 623 K. In addition to this process, Ni was found to diffuse significantly through the Au layer and segregates at the surface, proportionally to the increased annealing temperature. Consequently, the Ni oxidation process was found to take place thus causing the degradation of electrical contact. On the other hand Ni diffuses faster as well toward the Si/Al interface. No contamination traces at interfaces were observed. Electrical measurements of the metallized diode forward characteristics showed minor influence of the metallization heat treatment on the series resistance. Degradations were observed only in the reverse characteristics if the annealing was performed above 723 K.  相似文献   

13.
We have examined the possibility of utilizing thin-film contact layers for producing reliable Ohmic contacts to proposed intermediate-temperature (Bi,Sb)2Te3-based thermoelectric materials with improved thermoelectric properties, which allow the working temperature range to be extended to 600 K. Three contact configurations have been produced by ion-plasma magnetron sputtering: a single Ni layer, Mo/Ni bilayer, and Ni/Ta–W–N/Ni three-layer system. It has been shown that reliable contacts can be produced using Mo/Ni and Ni/Ta–W–N/Ni layers, which prevent interdiffusion between the materials to be joined and ensure good adhesion to the thermoelectric element.  相似文献   

14.
SnSe emerges as one of the most promising Te-free thermoelectric materials due to its strong anharmonic-ity and multiple valence bands structure.Recently,compositing has been proven effective in optimizing thermoelectric performance of various metal chalcogenides.Herein,a series of SnSe-xCu2S(x=0,0.5%,1%,3%,5%)materials have been fabricated via solution synthesis,particle blending,and spark plasma sinter-ing in sequence.After incorporating Cu2S,the materials become SnSe based composites with Cu doping,S substitution and Cu2SnSe3 secondary phase.We elucidate that the power factor of polycrystalline SnSe can be tuned and enhanced at varied temperature ranges through adjusting the addition amount of Cu2S.Additionally,the composites achieve suppressed lattice thermal conductivity when compared to SnSe itself,as the introduced point defects and SnSe/Cu2SnSe3 interfaces intensify phonon scattering.Conse-quently,SnSe-0.5%Cu2S and SnSe-3%Cu2S achieve a peak zT of 0.70 at 830 K(intermediate temperature range)and a highly increased zT of 0.28 at 473 K(low temperature range),respectively,which are~130%and 200%of values reached by SnSe at the corresponding temperatures.The study demonstrates that our approach,which combines compositing with elemental doping and substitution,is effective in optimizing the thermoelectric performance of SnSe at varied temperature ranges.  相似文献   

15.
The effects of boiling Aqua Regia (AQ), N2/Cl2 plasma followed by AQ and O2 plasma followed by AQ surface treatments prior to Ni/Au (20 nm/20 nm) metallization to p-GaN:Mg (∼ 3 × 1017 cm− 3) have been investigated. N2/Cl2 plasma was employed in a bid to lower the Ga/N and O/Ga ratios of the GaN surface to improve the contact properties to p-GaN, while O2 plasma was employed as an alternative to incorporate O into the Ni/Au system. Results show that a low Ga/N ratio does not necessarily correspond to a better contact. The positive effect of O2 over N2 anneal is observed only for the AQ-treated sample, although the mechanisms responsible for its positive effect: NiO formation and Ni/Au layer-reversal were observed for all O2-annealed contacts. We conclude that the effect of O2 anneal on the Ni/Au contact is dependant on the p-GaN surface prior to metallization.  相似文献   

16.
Integration of next generation thermoelectric materials in thermoelectric modules requires a novel or alternative approach for mating the brittle semiconducting thermoelectric materials and the ductile metal interconnects. In this study, pure Ni foil was directly bonded to PbTe-based thermoelectric materials using a rapid hot-press. The materials were sintered at 600 and 650 °C, under a pressure of 40 MPa and for various holding times. The resulting interfacial microstructures of the Ni/PbTe joints were investigated. Additionally, the distributions of elements and the phases formed at the Ni/PbTe interface were analyzed. The β2 phase (Nix Te2, 38.8–41 at.% Te) was identified at the Ni/PbTe joints bonded at both 600 and 650 °C. A ternary phase with approximate composition Ni5Pb2Te3 was found at the Ni/PbTe joints bonded at 650 °C. Additionally, the PbTe(Ni) phase was observed along the Ni grain boundaries for both bonding temperatures. Thermodynamics calculation results indicate that only the β2 phase can be formed at the Ni/PbTe interface at 900 K among the binary nickel tellurides.  相似文献   

17.
SnSe and silver (Ag) nanoparticles were sequentially deposited on TiO2 nanotube (NT) by pulsed electrochemical deposition and polyol chemistry process, respectively. The morphological observation under scanning electron microscope (SEM) showed that the average size of SnSe was about 30 nm and the Ag was about 5 nm. Transmission electron microscopy (TEM) combined with selected area electron diffraction (SAED) examination indicated that Ag nanoparticles exhibited a well-defined crystallinity. However, SnSe nanoparticles were amorphous and they turned to crystalline after being annealed at 300 °C in the atmosphere. The photocatalytic behavior of SnSe/Ag-TiO2 NT was evaluated by UV–vis diffuse reflectance spectra (DRS). The results showed that the deposition of SnSe and Ag nanoparticles increased light absorption intensity in the wavelength range of visible light, which implied that the SnSe/Ag-TiO2 NT is a promising ternary hybrid material in photocatalysis.  相似文献   

18.

In our work, SnSe nanosheets and nanostructured thin films were successfully synthesized via sonication-assisted exfoliation and coating process. The SnSe nanosheets respond to a uniform lateral size, with two to three single layers by 2.82 nm and 280 nm2 of average thickness and average area, respectively. The results were confirmed by Scanning Electron Microscope, Transmission Electron Microscope, and Atomic Force Microscope. X-ray diffraction and Raman spectra indicate that the SnSe nanosheets have high crystalline quality along a-axis. The SnSe nanostructured thin films were prepared in various thicknesses from 350 to 650 nm. The highest power factor value is achieved at 450 nm in 375–600 K temperature range. A simple method of fabrication and controllable thermoelectric properties of SnSe nanostructured thin films as well as other two-dimensional (2D) materials are introduced.

  相似文献   

19.

Degradation of nonalloyed ohmic contacts with heavily doped GaN epitaxially grown to the heterostructures with two-dimensional electron gas has been investigated. The change in the relative contact resistivity at temperatures of up to 600°C for the Ti/Pd/Au, Cr/Au, and Cr/Pd/Au metallization compositions has been studied. It is demonstrated that the Cr/Pd/Au metallization composition, the resistivity of which decreases at working temperatures of 400°C, is the most resistant to the effect of temperature. It is shown for the first time that the largest contribution to the increase in the contact resistivity to two-dimensional electron gas upon heating above 400°C is made by the resistivity of the Cr/Pd/Au–n+-GaN metal–dielectric structure, while, at temperatures of 400°C and higher, the resistance between heavily doped GaN and two-dimensional electron gas decreases.

  相似文献   

20.
Joining silicon thermoelectric elements using silver-based alloys and adhesive was investigated. Selective etching silicon with HF and KOH was performed to increase the interface area. Physical vapor deposition was used to coat Ti, Cr, Pt and Ag on silicon surface to form transition layers for the enhancement of interface bonding. Sound joints using the silver adhesive were obtained and they can withstand the highest temperature of 925 °C. Contact resistance of the joints under both thermal cycling and isothermal heat treatment was measured from 500 °C to 920 °C. It is found that the contact resistance of the silver/silicon joints is about 1 Ω at room temperature. At the elevated temperature of 920 °C, the contact resistance is less than 2.5 Ω. We conclude that the silver adhesive has excellent adhesion to silicon surface and the contact resistance is considerably low. Therefore, it is suitable for joining silicon thermoelectric elements for energy conversion at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号