首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用电子束物理气相沉积(EB-PVD)制备大尺寸超薄TiAl/Ti_3Al微叠层复合材料。利用XRD和SEM对材料的微观结构与相组成进行分析;对热等静压处理前后的试样进行拉伸实验研究;同时,采用真空热处理的方法研究微叠层在不同温度下的结构演变和微叠层材料层状结构的退化机理。结果表明:微叠层具有明显的层状结构,由α_2-Ti_3Al和γ-TiAl相组成;经热等静压处理后的试样具有较高的抗拉强度和较好的伸长率,断裂方式由脆性断裂转变为具有一定韧性的解理断裂和脆性断裂的混合断裂方式;扩散温度和Al元素的浓度分布直接决定了微叠层的相结构与形貌的变化。  相似文献   

2.
采用大功率电子束物理气相沉积(EB-PVD)制备了厚度为0.12mm的大尺寸Ti/Ti-Al叠层状复合材料.利用XRD和SEM对材料的组成相和微观结构进行了分析,对致密化处理前后的试样进行了不同温度下的静拉伸试验研究.实验结果表明:材料由Ti,α2-Ti3Al和γ-TiAl相组成,具有明显的层状结构,晶粒平均尺寸为100~300nm.相对于TiAl单体材料,微叠层材料的韧性有了较大提高,经致密化处理后的试样在层间界面对裂纹的钝化作用下,具有较高的拉伸强度,并表现出良好的延迟断裂特性.  相似文献   

3.
以Ti、Al和B4C为原料,采用真空电弧熔炼的方法制备了含Ti_2AlC-TiB_2增强相的TiAl基复合材料;分析了添加不同含量的Ti_2AlC-TiB_2对复合材料的物相组成、组织结构及力学性能的影响,并探讨了微观组织结构的形成机制。结果表明:Ti_2AlC-TiB_2/TiAl复合材料主要由TiAl、Ti3Al、TiB_2和Ti_2AlC等物相组成,TiB_2和Ti_2AlC分布在层片状的TiAl+Ti3Al基体中;随着原料中B4C含量的增多,复合材料组织中Ti_2AlC-TiB_2含量增多,且TiAl基体的晶粒被明显细化,TiB_2和Ti_2AlC分布于基体晶界或晶内。Ti_2AlC主要为层片状和板条状,尺寸5~15μm,而TiB_2颗粒形态与其含量有关,当Ti_2AlC-TiB_2含量小于20wt%时,TiB_2颗粒呈针棒状,尺寸为0.5~5μm,当Ti_2AlC-TiB_2含量增加到30wt%时,TiB_2颗粒主要呈块状,尺寸为5~20μm。Ti_2AlC由TiC与Ti-Al熔体发生包晶反应生成,Ti_2AlC和TiB_2的形成提高了Ti_2AlC-TiB_2/TiAl复合材料的硬度、塑性和抗压强度。当4Ti+Al+B4C的加入量为10wt%时,复合材料的变形量比纯TiAl提高14%,而抗压强度达到最高值1 591 MPa。Ti_2AlC和TiB_2通过裂纹偏转、颗粒钉扎、拔出等机制对Ti_2AlC-TiB_2/TiAl复合材料起到增强增塑的作用。  相似文献   

4.
元素粉末锻造法制备Ti-43Al-5V-4Nb合金的组织与性能   总被引:1,自引:0,他引:1  
以Ti、Al等元素粉末为原料,采用快速烧结方法和无包套锻造法制备尺寸为Ф50×10 mm的TiAl合金锻坯.快速烧结后,TiAl合金由TiAl、Ti3Al、B2、Ti和TiAl3相组成,并且该合金存在较多的孔隙,孔隙主要由偏扩散造成的;经过高温锻造后,其孔隙得到了有效的控制,相对密度达到93%;经过热处理后,该合金主要由TiAl和Ti3Al相组成,在室温下合金的屈服强度提高了110 MPa,达到480 MPa,室温延伸率到达0.83%;在700℃和750℃,其屈服强度分别为580 MPa和530 MPa,其延伸率分别为12%和27%.  相似文献   

5.
采取铝热原位合成的方法,以钛白粉和铝粉为原料原位合成制备TiAl/Al2O3复合材料。通过XRD分析了不同温度下反应过程及烧结样品的物相形成规律。分析结果表明:在750℃条件下反应时,原料中心部分变成了黑色,反应生成了钛的低价氧化物。随着温度的升高逐渐形成了部分TiAl金属间化合物和Al2O3。当温度达到1250℃时,反应比较充分,主要生成了TiAl金属间化合物和Al2O3,原位合成了TiAl/Al2O3复合材料。  相似文献   

6.
采用热压复合工艺在不同工艺参数下制备了Ti-Al3Ti层状复合材料,利用SEM和EDS对材料的组织结构进行了观察,研究了热压复合工艺参数对Ti/Al扩散反应及反应层微观组织结构的影响规律.结果表明,在不同工艺参数下,Ti/Al叠层热压复合反应的初生相均为Al3Ti.600℃时Ti/Al叠层只发生少许反应,在界面处生成一薄层Al3Ti,650和700℃时,Al层完全反应,各层界面处结合状态良好,层间结合紧密.650℃时Al3Ti为唯一生成相,但700℃时,由于反应动力学的影响Al3Ti/Ti层之间有TiAl层生成,Ti-Al系金属间化合物的生成顺序为Al3Ti→TiAl.反应过程中液相的存在能够使Ti、Al持续紧密接触,加快反应速度,促进反应顺利进行.  相似文献   

7.
为优化Al2O3层状复合材料的制备工艺及力学性能,选用不同初始粉体为原料制备了系列Al2O3/Al2O3-ZrO2(3Y)层状复合材料。借助X射线衍射、冷场发射扫描电镜和万能试验机等手段,系统考察了粉体结构和形貌对层状复合材料显微结构和性能的影响。结果表明:初始粉体的颗粒尺寸及尺寸分布会显著影响层状复合材料的显微结构及力学性能,以球磨微-纳米复合粉体为原料制备的层状复合材料具有最佳的力学性能,其抗弯强度和断裂功分别可达740MPa及3892J.m-2。同时,材料具有较高的层间结合强度,平行于层方向的抗弯强度高达436MPa。  相似文献   

8.
常规和纳米陶瓷等离子喷涂层抗冲蚀性能的对比   总被引:1,自引:0,他引:1  
纳米陶瓷具有高韧性和超塑性等独特的性能,用于制备涂层可极大地提高其耐冲蚀性能.以常规和纳米团聚体Al2O3-13%TiO2(质量分数)陶瓷粉末为原料,采用等离子喷涂工艺在TiAl合金表面制备了2种陶瓷涂层.比较了2种涂层的微观结构、结合强度和抗冲蚀性能,探讨了涂层的冲蚀破坏机理.结果表明:常规涂层呈典型的层状堆积特征,...  相似文献   

9.
为了提高TiAl基合金的抗高温氧化性能,采用热浸镀铝法和热扩散处理工艺在合金Ti-45Al-2Cr-2Nb-0.15B(原子分数,%)表面制备TiAl_3涂层.用XRD和SEM方法对涂层的结构和成分进行了分析.结果表明:TiAl合金经过热浸镀铝处理,表面生成了双相的富Al涂层,它由纯Al外层和TiAl_3内层组成;在550℃下,无论是在真空或者空气气氛中,进行扩散热处理,TiAl合金表面都形成了单相的TiAl_3涂层.  相似文献   

10.
元素粉末Ti与Al反应机理的研究进展   总被引:3,自引:0,他引:3  
开展元素粉末Ti和Al反应机理的研究有助于优化反应工艺.介绍了元素粉末Ti和Al反应机理的不同观点,并分别从动力学和热力学角度进一步分析了Ti和Al元素粉末的反应机理.动力学认为,元素粉末Ti和Al的反应是一个由扩散控制,包括TiAl3及TiAl2中间相生成的过程.热力学认为,TiAl3相的形成自由能最低,为Ti-Al系反应的首要产物,近而生成TiAl相,随后发生一系列与过渡相有关的反应.  相似文献   

11.
放电等离子烧结制备致密TiAl/Ti2AlC复合材料   总被引:4,自引:0,他引:4  
本研究以Ti/Al/TiC为原料,采用放电等离子烧结工艺制备致密TiAl/Ti2AlC复合材料。制备材料主要由TiA1和Ti2AlC两相组成。当原料中掺人体积分数为7%的TiC时,Ti-A1基体由γ相和层状相所构成,而Ti2AlC颗粒则均匀分布在基体中。经热处理后,则转变为Ti2AlC颗粒均匀分布在由γ相构成的基体中的结构。研究中还测定了所得复合材料的断裂韧性和弯曲强度。  相似文献   

12.
利用大功率电子束物理气相沉积设备,采用单靶蒸镀方法制备厚度为0.3mm的自由态TiAl合金板,并对制备态样品进行不同温度(650~950℃)的真空退火处理。借助X射线衍射仪、扫描电子显微镜及透射电子显微镜分析退火处理对相组成及微观组织结构的影响。结果表明:Ti,Al元素饱和蒸气压的差异导致富Ti成分区和富Al成分区沿板材截面呈现交替变化,其组成相为α_2-Ti_3Al,γ-TiAl和τ-TiAl_2;在650~950℃温度区间退火24h后,由于Al向Ti中扩散,呈现明显的界面融混和晶粒粗化,导致有序相含量的降低,其层状结构的退化受到孔洞形成、晶粒长大以及层间吞噬的影响。  相似文献   

13.
郝刚领  许巧平 《材料导报》2018,32(10):1659-1662
兼有金属和陶瓷特性的TiAl金属间化合物泡沫材料具有明确的性能优势和目标需求,在高温隔热材料、酸碱环境下的过滤材料、催化剂载体等领域有广阔的应用前景。本文首先采用Ti/Al元素粉末反应烧结制备了TiAl合金粉体,然后采用脱溶-烧结工艺制备了孔隙分布均匀、通孔型单孔结构的泡沫TiAl,该工艺可实现孔隙率、孔径、孔形等可控。准静态压缩测试表明,TiAl属于脆性泡沫材料,超过弹性区到达上屈服点时,材料瞬时坍塌失效。同时,随孔隙率的增大,TiAl的屈服强度、杨氏模量和弹性区域均减小,屈服强度与孔隙率的响应关系满足Gibson-Ashby模型。  相似文献   

14.
原位热压合成Nb掺杂Al2O3/TiAl复合材料   总被引:7,自引:0,他引:7  
利用Al-Ti-TiO2-Nb2O5体系的放热反应,原位热压合成了Nb掺杂Al2O3/TiAl复合材料.借助DTA结合XRD探讨了Al-Ti-TiO2-Nb2O5体系的反应过程,并采用XRD、OM和SEM研究了复合材料的物相组成及显微结构.结果表明:Al熔化的同时,体系发生了Al和Nb2O5的铝热反应,生成了NbO2和Nb等中间产物,并放出了较多热量,这些热量促使Ti和Al较早化合生成TiAl3,随即引发Al和TiO2较早的还原反应,进而促使材料在较低温度下致密烧结;产物由γ-TiAl、α2-Ti3Al、Al2O3和NbAl3相构成,Al2O3颗粒分布于基体交界处,存在一定的团聚;Nb2O5的引入,对基体γ-TiAl相和α2-Ti3Al相的的分布有一定的影响,使得基体晶粒细化,较好地改善了材料的力学性能.  相似文献   

15.
对利用EB-PVD技术制备的TiAl/Nb微层板进行了热处理,分析了沉积态材料与热处理态材料的组织结构和物相的变化。热处理TiAl/Nb中态富Ti的TiAl层中成分沿沉积方向呈有规律的梯度变化但未形成周期,界面处的反应扩散区由B2相组成;TiAl层、扩散区和Nb层的显微组织形貌依次为含月牙形亚晶的柱状晶、细小等轴晶和粗大等轴晶;经1000℃/16h的真空退火处理后,Nb层和扩散区会因完全扩散而消失。  相似文献   

16.
利用氧对金属Ti,Al粉的部分氧化,原位合成含Al2O3晶须的Al2O3/Ti-Al复合材料,利用XRD,EDAX和NO-RAN能谱仪对材料的晶相组成和元素成分进行分析,利用SEM观察材料显微组织和断口形貌。结果表明,反应步骤为:Ti,Al金属粉表面氧化→铝的熔化→TiAl3的生成→Ti2Al,TiAl,Ti3Al等多种化合物生成和Al对TiO2的还原反应;铝含量决定了材料的晶相组成,铝不足时,生成Ti2Al,TiAl,Ti3Al等多种金属间化合物和氧化铝,铝含量足够时,最终的产物为TiAl3,金属铝以及氧化铝等相;氧化铝晶须是通过VLS机理生成的,产物中晶须的数量和发达程度随铝含量的增加而递增,晶须的直径随热处理温度升高而增加。  相似文献   

17.
详细介绍了箔片热加工和电子束物理气相沉积(EB-PVD)在制备TiAl基合金微层板方面的特点及研究现状.重点讨论了EB-PVD制备TiAl基合金微层板的组织与性能,结果表明:TiA1基合金薄板的显微组织结构为非平直的柱状晶,亚结构为月牙形形貌;TiAl/Nb微层板中Nb层的显微组织形貌为粗大的等轴晶;TiAl/NiCoCrAl微层板中NiCo-CrA1层则主要由平直柱状晶结构的γ-Ni相组成.TiA1基合金微层板具有比TiAl基合金薄板更好的常高温力学性能,尤其是在750℃左右的高温环境中,TiAl/NiCoCrAl微层板的增韧效果最佳,伸长率高达72.2%;而TiAl/Nb微层板则表现出最好的高温综合性能,其高温抗拉强度高达443.1MPa,几乎与其室温时的抗拉强度持平.  相似文献   

18.
为了提高γ-TiAl合金的抗高温氧化性能,采用冷喷涂技术在γ-TiAl合金基体上喷涂纯Al层后进行热扩散处理,制备了厚约250μm的TiAl3-Al复合涂层,研究了该涂层在950℃下的长时间高温氧化行为,用X射线衍射仪(XRD)分析了复合涂层的相组成,用场发射电子显微镜研究了其形貌,用电子探针分析了其成分。结果表明:冷喷涂纯Al层致密,存在少量微裂纹和微气孔;TiAl3-Al复合涂层和基体之间生成了TiAl3相,TiAl3与Al的界面有空洞;γ-TiAl合金高温氧化70 h即失重,氧化产物为TiO2和Al2O3的混合物;TiAl3-Al复合涂层进入稳态氧化阶段后,增重缓慢,遵循近抛物线规律,高温氧化1 000 h后涂层仍完好,氧化产物主要为Al2O3相,还有微量的TiO2及钛氮化合物;TiAl3-Al复合涂层提高了γ-TiAl合金的抗高温氧化性能。  相似文献   

19.
通过在1000,1050,1100℃和1150℃下Si-Al-Y扩散共渗4h的方法,在TiAl合金表面制备了Y改性Si-Al共渗层,采用SEM,EDS和XRD分析了共渗温度对共渗层组织及相组成的影响。结果表明:不同温度所制备的Si-Al-Y共渗层均具有多层复合结构,共渗层的内层都是由TiAl2和γ-TiAl相组成,互扩散区为富Al的TiAl相,随温度的升高,共渗层外层和中间层的组成相都发生改变。经1000℃/4h共渗的最外层主要为TiAl3相;温度为1050℃时,由外向内依次为TiSi2外层,(Ti,X)5Si4及(Ti,X)5Si3(X表示元素Nb和Cr)中间层;1100℃和1150℃/4h条件下共渗层具有相似的结构,在1100℃/4h条件下其外层由(Ti,X)5Si4,(Ti,X)5Si3相组成;在1150℃/4h条件下其外层由(Ti,X)5Si3相组成。在四种温度条件下,1050℃/4h下制备的共渗层较厚,组织致密,适合用于Si-Al-Y共渗层的制备。  相似文献   

20.
Al-Ti-TiO2体系自蔓延高温合成及机理   总被引:1,自引:0,他引:1  
采用自蔓延高温合成技术制备了TiAl/Al2O3复合材料,研究了原料配比对合成过程及产物特征的影响,结果表明,随着Al2O3含量的增加,燃烧温度和燃烧速度均增大,材料的致密度得到改善。Al2O3颗粒尺寸小于1μm,分布于基体交界处,有一定程度的团聚。通过差热分析研究了Al-Ti-TiO2体系反应过程,发现Al-TiO2还原较晚开始,但由于激活能低而速度较快,因此较早完成,TiAl3最早生成,但只作为中间产物存在,随后向TiAl和TiAl3相转变的过程为控制环节,其激活能也体现为总反应的激活能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号