首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
高速铁路采用无缝钢轨铺设,大大地降低了轮轨通过钢轨接头时产生的轮轨冲击噪声。但是由于焊接钢轨时工艺不良和焊接材料与钢轨材料间存在性能差异等原因,车轮滚过这些焊接接头时产生的轮轨噪声远大于其它地方。为了探明钢轨焊接接头对轮轨噪声的影响,综合运用车辆-轨道耦合动力学理论、随机振动理论和声辐射理论建立了轮轨噪声预测模型,计算分析了高速列车通过钢轨焊接接头时的轮轨噪声。研究结果表明:焊缝凸台引起的轮轨冲击噪声主要集中在1250~3000Hz范围内。钢轨凹陷型焊缝引起的轮轨冲击噪声主要集中在400~1250Hz范围内。钢轨焊缝处短波不平顺波长增大,轮轨噪声声级最大值有所减小;短波不平顺波深增大,轮轨噪声声级最大值有所增大。  相似文献   

2.
为降低某型号内燃机车驾驶室噪声,对驾驶室结构上的阻尼材料进行布局优化设计。建立驾驶室声学数值模型,采用基于模态的声-振耦合法计算驾驶室声学响应,提取驾驶员耳旁声压级找出噪声声压峰值处所对应的振动频率;对驾驶室进行板块贡献量分析,找到对噪声声压峰值处噪声贡献较大的壁板;为了降低39 Hz、73 Hz、110 Hz频率处噪声,建立拓扑优化数值模型求解自由阻尼的优化布局,构建优化后的数值模型计算5 Hz~120 Hz驾驶室声学响应,结果表明自由阻尼材料的优化布局能够降低驾驶室内噪声。  相似文献   

3.
为研究隧道内地铁列车车内噪声特性,建立了隧道-车体有限元-边界元声学分析模型。基于地铁B型车车轨耦合模型和现场试验获取车体二系悬挂力激励和轮轨噪声激励,将激励施加到车体计算分析车内噪声,以广州轨道交通7号线列车噪声试验数据对仿真分析结果进行验证,并研究了结构声和空气声对车内噪声的影响规律。分析结果表明:车内各标准点声压级图变化趋势基本一致,峰值中心频率集中在630 Hz处,主要频段为200~1 600 Hz,车体转向架上方A声级比车体中心高约1.02~2.35 dB(A);结构声对车内噪声的主要影响频段在20~200 Hz,空气声对车内噪声的主要影响频段在200~5 000 Hz,其中500~5 000 Hz频段最为显著;60 km/h车速下,结构声荷载作用下车厢中心处A声级比空气声荷载作用下相同位置高约21 dB(A)。该研究成果可为降低列车车内噪声,改善车内声学环境提供理论依据。  相似文献   

4.
以道路通行的单个车辆为研究对象,导出半自由场单车点声源的噪声辐射模型,应用噪声测量分析手段,结合相应的声学评价量,对实际道路条件下单车辐射噪声的声级大小、时域信号、频谱、声学品质等特性进行探讨和研究。结果表明,随车辆与测点距离的变化,单车辐射声的声级呈现先增大后减小的非线性变化规律;其高频声压级随距离增加而衰减;与小车相比,中车和重车辐射噪声中的低频成份比例大,声级值高;小车辐射声响度在低频125Hz和高频1kHz频段的贡献量较大,重车则体现为低频段(250~500 Hz)贡献量大,而高频段的贡献量不明显。  相似文献   

5.
对某地铁普通整体道床地段与钢弹簧浮置板道床地段隧道内和车内噪声进行测试,研究列车内外噪声辐射大小及频谱特性。研究结果表明:隧道内距离轨面越近,噪声越高,说明轮轨噪声为主要噪声源;同一轨道区段,不同车厢内噪声峰值频率相同,但是噪声峰值有略微区别;浮置板地段,隧道内噪声在40 Hz~125 Hz频段,车内噪声在20 Hz~400 Hz频段较普通道床地段有所增大,其他频段隧道内和车内噪声均不大于普通道床地段;对隧道内和车内噪声的1/3 倍频程声压级曲线进行A计权处理,普通道床和浮置板道床地段声压级峰值频率较计权之前均变大,计权后普通道床地段和浮置板地段车内噪声等效声级相差很小,不到1 dB(A)。  相似文献   

6.
重型商用车驾驶室内噪声主要以中低频结构噪声为主,为确定驾驶室内结构噪声的主要贡献部件,建立重型商用车驾驶室有限元模型,通过实验模态与仿真模态对标,保证有限元模型的准确性。在此基础上利用声学传递路径分析方法,得到对驾驶室结构噪声贡献较大的钣金,并在钣金表面增加沥青阻尼板,通过仿真与实车试验验证,驾驶室内噪声降低1.0 d B(A)~1.5 d B(A),证明分析方法是正确的,改进措施是有效的。  相似文献   

7.
摘 要 为了预测和控制快速和准高速线路上车轮扁疤激起的轮轨冲击噪声,应用车辆-轨道耦合动力学理论和声辐射理论,建立了基于车辆-轨道相互作用的轮轨冲击噪声预测模型,编制轮轨噪声仿真软件TTINSIM计算分析了车轮扁疤激扰下轮轨冲击噪声的特性。结果表明:(1)车轮扁疤是造成轮轨冲击噪声的重要源泉;(2)车轮扁疤引起的冲击噪声主要集中在250Hz以上频段;(3)车轮扁疤引起的轮轨冲击噪声跟扁疤长度、扁疤个数以及列车运行速度有很大的关系;(4)车轮新扁疤比旧扁疤激起的轮轨冲击噪声大2~3dB(A)。  相似文献   

8.
地面城轨交通近轨道区域自由地表振动实测研究   总被引:4,自引:0,他引:4       下载免费PDF全文
摘要:城市轨道交通诱发周边地表振动已成为突出的环境振动问题。为考查轨道周边自由地表垂向振动的特性及其传播规律,在北京城铁13号线回龙观至霍营区段进行了现场观测试验。从时域、功率谱和振动级三个方面对获得的数据进行了分析。结果显示:随着与轨道距离的增加,地表加速度峰值明显衰减,振动持时增加;振动优势频率为10-80Hz,近轨道处以高频为主,远离轨道处以低频为主;加权Z振级单调衰减,但分频段振级并非单调衰减,与场地卓越频率接近的频段存在较大的反弹现象;乘客满载和半载对Z振级的影响不大;相对于干线铁路而言,城轨交通地面振动水平较低。  相似文献   

9.
对某地铁普通整体道床地段与钢弹簧浮置板道床地段隧道内和车内噪声进行测试,研究列车内外噪声辐射大小及频谱特性。研究结果表明:隧道内距离轨面越近,噪声越高,说明轮轨噪声为主要噪声源;同一轨道区段,不同车厢内噪声峰值频率相同,但是噪声峰值有略微区别;浮置板地段,隧道内噪声在40 Hz~125 Hz频段,车内噪声在20 Hz~400 Hz频段较普通道床地段有所增大,其他频段隧道内和车内噪声均不大于普通道床地段;对隧道内和车内噪声的1/3 倍频程声压级曲线进行A计权处理,普通道床和浮置板道床地段声压级峰值频率较计权之前均变大,计权后普通道床地段和浮置板地段车内噪声等效声级相差很小,不到1 dB(A)。  相似文献   

10.
针对某客车变速器异响噪声的非稳态特性,在ANSI_S3.4 2005标准基础上建立了Moore瞬时响度模型,并引入目前主流声学软件采用的Zwicker响度模型进行对比验证,最后将瞬时响度模型应用于车内噪声信号的识别及其定量评价。结果表明:Moore响度模型计算精度及其瞬时特征响度谱能量分布的清晰度均比Zwicker模型的结果更高,采用Moore瞬时响度有助于非稳态过程中的噪声源识别及噪声机理分析,用Moore响度来定量评价噪声具有可行性。  相似文献   

11.
为了研究高速载客列车车体结构振动及车内声学特性,建立高速列车有限元模型,对全车体进行模态分析和轨道谱响应分析,并基于声与结构耦合对车体内腔进行声学模态分析。车体前200阶固有模态频率跨度为0.62~100.27 Hz,前6阶0.62~1.51 Hz为车身整体相对于转向架的低频振动,其余各阶为车身结构的弹性振动。当施加我国200 km/h等级提速线路通用轨道谱激励时,体振动在0~2.00 Hz的低频有较大响应。车体内腔前200阶声学模态频率跨度为0~126.66 Hz,在20~100 Hz之间模态比较密集。  相似文献   

12.
车内噪声预测与面板声学贡献度分析   总被引:14,自引:4,他引:14  
面板声学贡献度分析是汽车NVH特性研究的重要内容,识别各面板对车内场点的贡献度对于控制车内噪声有着重要意义。利用有限元结合边界元的方法,建立三维车辆乘坐室声固耦合模型,使用ANSYS软件计算出乘坐室在20-200Hz频率的声固耦合振动特性后,采用LMS Virtual.lab软件预测了驾驶员左、右耳的声压响应。并通过各壁板对驾驶员右耳声压的面板贡献度分析,得出了各壁板对驾驶员右耳总声压的贡献度,为降低车内某点噪声进行结构修改提供理论依据。通过对结构修改,有效降低了车内某点噪声。  相似文献   

13.
结合某实际高铁高架车站候车厅,分别建立候车厅的有限元、边界元模型与统计能量法模型,采用直接边界元法计算20~200 Hz范围内的低频噪声,用统计能量法计算200~2 000 Hz范围内的高频噪声。计算结果通过实测结果进行验证,结果表明模型能够较准确地预测出候车厅内的噪声水平。进一步对候车厅各部分进行声学板块贡献度分析以及声腔子系统的声学贡献度分析,结果表明候车厅建筑顶棚对于候车厅内噪声的贡献水平最大,为候车厅的降噪提供指导。  相似文献   

14.
以成灌快铁安德站为工程背景开展现场试验,实测了轨道梁、站台、候车大厅和办公室区域的振动加速度和声压,并对实测信号进行时域和频域分析。采用数值方法在频域内分析了轨道梁振动、桥墩动反力、站房振动和室内二次辐射噪声,并将计算结果与实测值进行对比。结果表明:当列车以速度190 km/h通过车站时,轨道梁振动的优势频段为40~80 Hz,竖向振动加速度峰值小于规范限值;办公室和候车大厅地面振动的优势频段为20~100 Hz,振级接近80 dB;站台处、办公室内和候车大厅内噪声的优势频段分别为300~2500 Hz、40~63 Hz和20~100 Hz,办公室内和候车大厅内的低频噪声远远超出身心舒适度限值;桥墩竖向动反力的优势频段为25~63 Hz,是引起办公室和候车大厅地面振动的主要原因;站房–土体耦合有限元模型和内部声辐射边界元模型可以较好地模拟站房振动及二次辐射噪声。  相似文献   

15.
张超  张军 《振动与冲击》2020,39(12):265-271
铝蜂窝夹芯复合结构在航空工业、高速列车及汽车车体中得到越来越多的应用,其隔声性能对车内及机舱噪声有重要影响。建立了碳纤维铝蜂窝夹芯复合结构有限单元模型,用有限单元法计算了结构在声载荷激励下的响应,并计算分析了复合结构的隔声性能,分析了碳纤维复合面板厚度、面板层数、铺设角度、铝蜂窝芯层的厚度、铝蜂窝壁厚对隔声性能的影响。研究结果表明,面板采用碳纤维复合结构时,在小于1 000 Hz的低频段,相同面板厚度的铝蜂窝复合结构隔声性能比全铝合金材料的铝蜂窝夹芯复合结构有所降低,而且在高频段会出现隔声量更低的隔声低谷;相较于铝合金面板,复合结构的面板采用碳纤维复合材料时,能够实现整体结构轻量化也提高复合结构的隔声性能;各层之间按相对90°铺设时复合结构隔声性能最好;随着面板厚度的增加复合结构隔声性能增加,面板层总厚度不变的情况下,单层面板或者过多的层数都会使复合结构隔声性能降低。  相似文献   

16.
徐野  熊鹰  黄政 《振动与冲击》2020,39(2):86-91
为真实模拟壳体噪声的激励源特性,建立螺旋桨-轴系-壳体耦合系统有限元模型,以CFD计算得到的螺旋桨非定常载荷作为激励源,采用模态叠加法计算耦合系统强迫振动响应;分别以桨叶表面偶极子声源和耦合系统表面振速作为边界条件,采用声学直接边界元法计算螺旋桨直接辐射噪声和耦合系统振动噪声。数值计算结果表明:两种噪声的声压级都随螺旋桨转速的增加而增大,其中振动噪声增幅较小;耦合系统振动噪声声压级随轴承刚度的增加而增大;两种噪声的声压级在量级上较为接近,在频谱及声压分布上具有各自的特征,在预报耦合系统水下辐射噪声时应综合考虑两种噪声的影响。  相似文献   

17.
为研究地铁列车进出车辆段对上盖物业振动的影响,先结合两个实际工程,对武汉某车辆段和宁波某车辆段内运用库列车振动荷载进行现场实测,并对两车辆段内运用库列车振动荷载进行对比分析,探讨车辆段内运用库列车振动荷载特性。然后改善了基于弱振情况下结构精细化有限元模型构建方法和荷载输入方法,并基于实测数据验证了其合理性。最后建立了武汉某车辆段上盖物业精细化有限元模型,计算分析上盖物业的振动响应。计算结果表明:地铁列车进出车辆段引起上盖建筑物的振动高频成分较丰富,其主频率在40Hz附近,列车振动荷载特性决定了建筑物内振动的频域分布;建筑内楼板跨中各方向振级沿高度方向的变化是不同的,铅垂向Z振级沿楼层的上升呈现先减小后增大的特点,而在水平方向振级总体上呈现随楼层增大而增大的特点。本文的研究成果可为精确预测、分析和评价地铁车辆段上盖物业振动舒适度提供基础。  相似文献   

18.
本文基于边界元法对车室进行声场分析和车身板块贡献度分析,进而找出车内噪声声压峰值处所对应的振动频率及该峰值下的“噪声源”板块,围绕车身减振降噪这一目标和车身设计轻量化的要求,基于响应面法建立阻尼复合结构的声辐射特性、模态频率和损耗因子与结构参数关系的数值模型,并对相应约束条件下的最佳阻尼复合结构参数匹配进行优化设计,综合研究内容对车身结构阻尼处理后取得了较好减振降噪效果。  相似文献   

19.
近年来,随着地铁建设的迅速发展,地铁运行时所产生的振动对邻近建筑室内的二次结构噪声影响逐渐引起人们的关注。为研究室内二次结构噪声数值预测方法,以北京地铁某正线邻近二层音乐排练厅为例,首先对建筑墙、楼板的振动及室内噪声状况进行多点同步详细测试,通过实测数据分析得到地铁运行所致建筑室内振动及二次结构噪声特性;然后采用大型有限元软件Ansys建立隧道-岩土-建筑-声场三维精细化数值仿真模型,对地铁列车通过时的室内二次结构噪声进行仿真计算,并与实测数据进行对比分析。结果表明:地铁列车运行引起的建筑室内二次结构噪声在63 Hz处出现峰值;在100 Hz以下频率范围内仿真结果与实测结果吻合较好;受模型网格划分尺寸影响,100 Hz以上振动和二次结构噪声数值计算结果小于实测值,考虑到地铁运行引起的振动频率主要分布在1 Hz至100 Hz范围内,其对100 Hz以上的振动及二次结构噪声影响相对较小,因此可认为所采用的数值计算方法是科学可靠的,可为类似地铁沿线建筑室内二次结构噪声预测评价提供参考。  相似文献   

20.
以电力变压器低频隔声为应用背景,提出了一种结构简单轻质的局域共振声学超材料板,它由在两边支撑框架上紧密粘贴高分子聚合物薄板制成,相比四边支撑超材料板,其具有更加优越的低频隔声能力。在声波垂直入射条件下,采用有限元仿真对其隔声特性进行研究,结果表明在248 Hz处出现了一个明显的隔声峰,隔声量达到了31 dB。为拓宽低频隔声频带,在超材料板上布置质量块,仿真结果表明在152~560 Hz范围内出现了三个密集的隔声峰,最高隔声量达26 dB,从而一定程度上实现宽频隔声效果;同时在120 Hz处出现了一个隔声量为18 dB的隔声峰。最后搭建了基于小型箱体的隔声实验平台,可以发现实验测试结果与仿真结果具有较好的一致性,从而验证了轻质声学超材料板良好的低频宽带隔声性能,说明了两边支撑声学超材料板具有广阔的工程化应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号