首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
玉米芯活性炭的制备及其电化学性能研究   总被引:1,自引:0,他引:1  
以玉米芯为原料,采用KOH活化法制备超级电容器用活性炭。利用低温氮气吸附及恒流充放电、循环伏安、交流阻抗等方法测定活性炭的孔结构及其用作电极材料的电化学性能。研究了脱灰对玉米芯活性炭孔结构及其电化学性能的影响。结果表明,在碱炭比3∶1、活化温度为800℃、活化时间为1h的条件下,可以制备出比表面积为2019m2/g、总孔容为1.084cm3/g、中孔率为15.6%的高比表面积活性炭。玉米芯经脱灰处理可以显著改善其所制活性炭的孔隙发达程度和中孔分布,脱灰玉米芯活性炭的比表面积、总孔容及中孔率分别可达2311 m2/g、1.246cm3/g和26.0%。玉米芯活性炭电极材料在3mol/L KOH的电解液中具有良好的电化学性能,其比电容量可达253F/g。脱灰玉米芯活性炭电极的比电容量更高(可达278F/g),比电容提高9.9%,且内阻更小。  相似文献   

2.
以褐煤和褐煤基无灰煤为原料,采用KOH直接活化法制备了高比表面积活性炭,对比了褐煤基活性炭和无灰煤基活性炭的灰分含量,比表面积,孔径结构及电化学性能。结果表明,褐煤和无灰煤在相同制备条件下可分别获得灰分为5.61%和0.49%的高比表面活性炭,将两种活性炭用于以3mol/L KOH为电解液的双电层电容器中,单电极质量比电容分别为182.40和337.38F/g。对比发现,对原料脱灰,可从根本上降低活性炭灰分,改变活性炭孔径结构。无灰煤基活性炭比褐煤基活性炭更适用于双电层电容器的电极材料,其充放电性能、倍率特性均优于褐煤基活性炭。  相似文献   

3.
以柚子皮为原料,采用预先炭化-KOH活化工艺制备生物质活性炭,并将其用作超级电容器电极材料。采用低温氮气吸附、扫描电镜(SEM)、透射电镜(TEM)及X射线光电子能谱(XPS)等方法表征生物质活性炭的孔结构、表面形貌等微观结构和表面化学性质,利用恒流充放电、循环伏安、漏电流等手段探究生物质活性炭用作电极材料的电化学特性。研究表明:柚子皮经预先炭化-KOH活化处理可以制备出比表面积为1 347~2 269m~2/g,总孔容达0.642~1.283cm~3/g,中孔比例为23.83%~48.90%的高品质生物质活性炭。该生物质活性炭具有发达的比表面积、"大孔-中孔-微孔"三维贯通梯级孔结构,且表面富含羰基、酚羟基及羧基等含氧官能团,是一种比较理想的超级电容器电极材料。生物质活性炭电极材料在KOH电解液中具有优异的电容特性,在50mA/g电流密度下的比电容最高可达243F/g,5 000mA/g电流密度下的比电容仍可保持为175F/g,且具有优异的循环稳定性,循环1 000次后比电容保持率高达93.34%,漏电流仅为0.006 3mA。生物质活性炭优异的电化学特性与其发达的比表面积、"大孔-中孔-微孔"三维贯通梯级孔结构、合理的孔径分布及独特的富氧表面化学性质密切相关。  相似文献   

4.
为探究浸渍工艺对活性炭理化性质及性能的影响,以脱除木质素的竹纤维为原料,氯化锌为活化剂,通过真空浸渍、常温搅拌浸渍、物理混合浸渍3种不同的方式浸渍竹纤维,采用化学活化法制备竹纤维基活性炭。通过比表面积及孔径分析仪、傅里叶变换红外光谱仪、X射线衍射仪等对活性炭的孔隙结构、化学结构和晶体结构进行表征,并探讨不同浸渍方式制备的活性炭对亚甲基蓝的吸附能力及电化学性能。结果表明:常温搅拌浸渍制备的活性炭比表面积最大,为2096.981m2/g,物理混合浸渍制备的活性炭比表面积最小,为1788.566m2/g;常温搅拌浸渍制备的活性炭微孔最多,真空浸渍制备的活性炭中孔最多;竹纤维活化后纤维素及半纤维素基本分解,不同浸渍方式制备的活性炭官能团并无显著差异;活化后纤维晶型遭到破坏形成无序炭结构,3种浸渍方式制备的活性炭均具有部分石墨和无序石墨的特征。电化学性能测试表明:3种活性炭均表现出明显的双电层电容特性及可逆性;不同电流密度条件下搅拌浸渍制备的活性炭比电容均最高,电流密度为0.2A/g时比电容达到257F/g;真空浸渍制备的活性炭电荷转移电阻更低,物理混...  相似文献   

5.
以中温煤沥青为原料,采用预脱灰和后脱灰两种不同工艺并结合KOH活化法造孔,制备了超级活性炭。系统研究了制备工艺对样品中灰分含量、微观形貌、孔结构以及电化学性能的影响。结果表明,采用后脱灰工艺制备的样品,与仅KOH活化而未进行酸溶液处理的样品相比,其灰分含量均明显降低,比表面积显著提升,比容量明显提高。而采用预脱灰工艺制备的样品,与后脱灰工艺相比,其超级活性炭灰分含量更低(≤0. 1 wt.%)、比表面积更大(2 722 m~2·g~(-1))、电化学性能优异。在0. 2 A·g~(-1)电流密度下,比容量为295 F·g~(-1),倍率性能良好(10 A·g~(-1)电流密度下仍为192 F·g-1)。循环稳定性优异,经5 000次恒流充放电循环之后,电容保持率高达99%,在对称超级电容器50 W·kg~(-1)的功率密度下,能量密度可达到9. 1 Wh·kg~(-1),表明其优异的储能性能。  相似文献   

6.
微波法煤基活性炭的制备及其电化学性能研究   总被引:1,自引:1,他引:0  
以内蒙古优质褐煤为原料,KOH为活化剂,采用微波加热活化法制备超级电容器用活性炭,利用低温氮气吸附及恒流充放电、循环伏安等方法测定活性炭的孔结构及其用作电极材料的电化学性能,并与日本商业化超级电容器用活性炭在结构及性能方面进行对比分析。结果表明,在碱炭比为3,微波活化时间为20min的条件下,可制备出比表面积达2593m2/g、总孔容达1.685cm3/g、孔径主要分布在0.5~10nm之间、中孔率达67.3%、平均孔径为2.61nm的优质活性炭。该活性炭用作超级电容器电极材料在3mol/L KOH电解液中具有优异的电化学性能,电流密度由50mA/g提高到10A/g时,其比电容由346F/g降低到273F/g,显示出良好的功率特性,经1000次循环后,比电容保持率为93.2%。与商业活性炭相比,微波法活性炭的性能更加优良。  相似文献   

7.
孔结构对煤基活性炭电极材料电化学性能的影响(英文)   总被引:1,自引:1,他引:0  
以太西无烟煤为前驱体,NaOH为活化剂制备电化学电容器电极材料。采用N2吸附法及电化学测试对活性炭的孔结构和电化学性能进行了表征。在1mol/L(C2H5)4NBF4/碳酸丙烯酯有机电解液体系中,研究了孔结构对活性炭电极材料的电化学性能的影响。结果表明:以NaOH为活化剂可制备出比表面积943mol/L~2479mol/L、比电容57F/g~167F/g的活性炭电极材料。活性炭电极材料的比电容不仅取决比表面积,而且与活性炭的孔径分布有关。孔径为2nm~3nm的中孔的存在可以有效降低电解液的扩散阻力,提高电极材料比表面积的利用率,从而使电容器的电化学性能得到增强。  相似文献   

8.
NiO-改性活性炭电极电化学电容器研究   总被引:1,自引:0,他引:1  
为提高普通活性炭材料的电化学性能,用Ni(NO3)2溶液浸渍法和高温热解对活性炭进行改性处理.分别采用氮气吸附法、SEM、XPS等方法分析研究改性炭材料的比表面积、孔结构、形貌和组成;用循环伏安、恒流充放电等电化学方法研究改性活性炭电极构成的电化学电容器性能.结果表明,由Ni(NO3)2热解产生的NiO有准电容效应,与活性炭原有的双电层电容构成了复合电容,因而改性炭的电容量有明显的提高,其质量比电容达到246.1 F/g,比原样炭的130.1 F/g提高了89.2%,表观体积比电容和面积比电容分别高达169.7 F/cm3和30.1 μF/cm2,均显著优于普通炭材料.  相似文献   

9.
超临界水活化褐煤制取活性炭   总被引:3,自引:0,他引:3  
以超临界水(SCW)活化褐煤制取活性炭为目的,在半连续SCW反应装置上,研究了活化温度(600℃~700℃)、压力(0.1MPa~30MPa)和KOH添加量(质量分数为0%~15%)对小龙潭褐煤所制活性炭吸附性能和孔结构的影响。结果表明:升高活化温度有利于煤转化率、活性炭BET比表面和碘吸附值的增加,同时中孔比例也明显升高。与相同温度下常压水蒸气活化相比,SCW活化反应有利于活性炭的吸附性能和中孔比例的升高。650℃时活化压力由0.1MPa升至25MPa,活性炭BET比表面增加74%,中孔所占比例增加38%左右。煤中添加质量分数10%KOH可进一步促进孔隙生成,活性炭BET比表面可达825m^2/g。此外,KOH还可与煤中的矿物质发生反应,通过酸洗脱除活性炭中的灰分至质量分数2%以下。  相似文献   

10.
以NaOH为活化剂,采用两步热化学过程制备出木基活性炭。将所制活性炭用作以硫酸为电解液的超级电容器电极材料。探讨了合成条件对活性炭孔结构和电化学性能。结果表明,在微孔中形成双电层电容,介孔和大孔则实现离子运输。在高的活化温度或高碱炭比下,材料被过度活化,导致高的介孔、大孔孔容,这增加了电解液的吸收,从而降低质量比电容。最佳的活性炭合成条件为,活化温度:600℃,碱炭比:1.25。  相似文献   

11.
高性能炭电极材料的制备和电化学性能研究   总被引:1,自引:0,他引:1  
以胡桃壳为前躯体,采用ZnCl2化学活化法制备炭电极材料,研究了活化剂与果壳的不同混合质量比例对炭材料性质的影响,用氮气吸附和傅立叶红外表征活性炭材料的比表面积、孔结构和表面性质,结果表明:活性炭材料表面存在着含氧官能团,为一种高微孔无定形炭材料;以制备的活性炭为电极材料,KOH为电解液构成超级电容器,采用循环伏安、恒流充放电等电化学方法研究了其电化学性能,结果表明:制备的活性炭电极材料表现出理想的电化学电容行为,比电容高达271.0F/g,漏电流和等效串联电阻分别只有0.25mA和0.39Ω,稳定性很高,循环充放电5000次后,电容量仍保持88%以上.  相似文献   

12.
以聚酰亚胺(PI)薄膜边角料为前驱体, 采用CO2物理活化法制备高比表面活性炭。研究了活化工艺对PI活性炭孔结构性能的影响及其活化机理, 探讨了活性炭孔结构对其电化学性能的影响。结果表明, PI薄膜可以在相对较低的温度下经CO2活化制备出具有无定型微晶质炭结构、孔隙结构发达的活性炭, 比表面积最高可达2809 m2/g, 总孔容积达1.423 cm3/g; 通过控制CO2活化工艺, 可实现对PI活性炭的孔道尺度与分布的调控。作为超级电容器电极材料, PI活性炭在100 mA/g条件下, 比电容高达237 F/g, 电容保持率为86%。孔径集中于0.7~2 nm, 并存在适量介孔的活性炭具有极佳的电化学性能。  相似文献   

13.
石油焦基活性炭电极电容特性研究   总被引:28,自引:10,他引:18  
用石油焦作原料,KOH为活化剂,在不同活化条件下制备系列不同比表面积的活性炭。用直流恒流循环实验考察活性炭电极的电化学性能。实验发现,石油焦基活性炭随着活性炭比表面积的增加,活性炭比电容逐渐增大;活性炭孔结构分布相同,随比表面积的增加,比电容线性增加,比表面积利用率降低。活性炭孔结构对比电容有较大的影响,30%KOH电解液可以进入活性炭中大于0.6nm的微孔,孔径越大,其比表面积利用率越高。  相似文献   

14.
炭气凝胶为电极的超级电容器电化学性能的研究   总被引:8,自引:0,他引:8  
炭气凝胶电极的电化学测试表明,炭气凝胶具有性能稳定、充放电效率高、适合于大电流充放电等优良性能.炭气凝胶储电的影响因素主要来自于比表面积、孔容和孔结构分布的综合作用.孔容较大,平均孔径较宽时,储电能力较大,且大孔容对电极材料储电是相当有利的.在高比表面积活性炭中添加不同比例的炭气凝胶,可以提高电极的比电容,炭气凝胶含量为15%时,电极比电容最高.  相似文献   

15.
活性炭作为一种电极材料广泛应用于商业超级电容器中。炭材料表面的氧官能团是影响超级电容器电容性能的重要因素之一。通过(NH_4)_2S_2O_8温和的氧化过程在活性炭上引入氧官能团,并在不同温度下热处理样品来进一步除去氧官能团,同时又保留了活性炭原始的孔结构。结果表明,在水系电解液中,含氧官能团,特别是羧基和羰基,不仅加强了电解液在电极中的扩散,而且通过引入赝电容来提高电容。在300℃惰性气氛热处理后可以增加电极材料的电容和倍率性能。然而,不适量的氧官能团会堵塞活性炭的孔,导致其电化学性能差。在有机电解液中,含氧官能团会降低电极材料的电容,但在700℃惰性气氛热处理后可以有效提升材料的电容。研究结果揭示了氧官能团与电化学性能之间的关系,对于设计实际应用中的高性能超级电容器至关重要。  相似文献   

16.
为提高活性炭电极材料的比电容,本实验采用低浓度碱式碳酸镍溶液对活性炭进行氧化镍表面负载,利用碱式碳酸镍的热解特性,在引入赝电容的同时,减小负载对活性炭原有孔隙结构的影响,从而在引入赝电容的同时较好地保留活性炭的双电层电容.本实验还研究了不同数量氧化镍负载对活性炭孔结构和电化学性能的影响.实验结果表明:氧化镍负载改性后,活性炭在较好保留了原有孔隙结构的基础上,还在孔结构表面均匀负载了大量的纳米级氧化镍,改性后活性炭电极材料引入了赝电容,活性炭的比电容性能得到明显改善,且随着氧化镍负载数量的增多,活性炭比电容性能逐渐提高.  相似文献   

17.
以松香改性煤沥青热处理产物为原料,通过KOH活化法制备高比表面积活性炭。采用偏光显微镜和XRD对松香改性煤沥青热处理产物进行表征,采用氮物理吸附仪对所制备活性炭的孔结构参数进行分析,并对其吸附性能进行研究。研究表明:松香改性煤沥青热处理产物不仅含有大量的中间相炭微球而且具有更高的结构有序度。另外,这种热处理产物在活化过程中能产生更多的孔隙结构。当松香添加量为煤沥青的5%(wt,质量分数)时,所制备的活性炭具有最高的比表面积、中孔含量和最佳的吸附性能。  相似文献   

18.
为了探索离子注入Nb不锈钢双极板在模拟质子交换膜燃料电池(PEMFC)中的性能,采用极化曲线、恒电位试验和电化学阻抗谱等方法研究了离子注入铌316不锈钢在PEMFC环境中耐孔蚀性能的影响.研究表明:模拟PEMFC环境中316不锈钢和离子注入铌316不锈钢试样均发生孔蚀;Nb离子的注入提高了抗孔蚀性能,且随着介质温度的升高,孔蚀倾向加剧.孔蚀的诱发是离子注入铌316不锈钢表面水解形成Nb(OH)+4,导致钝化膜局部溶解破坏所致.模拟PEMFC环境中316不锈钢表面注入铌层膜电阻Rcoat、电荷转移电阻Rct升高,而注入铌层的电容值Ccoat、双电层电容Cct下降,表明注入铌层成为高电阻、低电容的阻挡层,对基体起到良好的保护作用.  相似文献   

19.
通过改变有机酸与无机酸的配比研究合成高电导率聚苯胺的最佳条件,使用硝酸对活性炭进行改性,测定活性炭的沉降质量和活化指数并筛选出吸附性能最佳的改性活性炭,将最佳工艺条件下合成的聚苯胺与改性活性炭进行复合制备了聚苯胺/改性活性炭复合电极材料。通过X射线衍射、扫描电子显微镜和电化学性能测试对复合电极材料的结构和性能进行表征和研究。结果表明:用质量分数3%的硝酸改性的活性炭掺杂聚苯胺,二者的相容性最好,且改性活性炭含量为25.5%(质量分数)时,制备的复合电极材料比电容最大,为282F/g,比纯聚苯胺的比容量(210F/g)增加了34.3%。电化学性能测试表明,聚苯胺/改性活性炭复合电极材料内阻小,阻抗高,电容性能优良。  相似文献   

20.
选用微孔和中孔活性炭采用浸渍法负载金属离子,考察在水性电解质中用于超级电容器的活性炭复合电极的电化学性能,探讨活性炭在负载前后的放电容量变化情况.采用低温氮吸附和直流恒流循环实验考察活性炭复合电极的孔结构及电容性能.研究表明:金属Cu、Mn具有比较明显的准电容效应,Co、Ni可提高中孔活性炭的放电容量,而金属Mo、Fe和Y的准电容效应不显著;中孔活性炭负载金属的作用明显强于微孔活性炭;中孔活性炭负载金属Cu时,放电容量随负载量的增加而上升.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号