首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Due to the complexity of proteome samples, only a portion of peptides and thus proteins can be identified in a single LC-MS/MS analysis in current shotgun proteomics methodologies. It has been shown that replicate runs can be used to improve the comprehensiveness of the proteome analysis; however, high-intensity peptides tend to be analyzed repeatedly in different runs, thus reducing the chance of identifying low-intensity peptides. In contrast to commonly used online ESI-MS, offline MALDI decouples the separation from MS acquisition, thus allowing in-depth selection for specific precursor ions. Accordingly, we extended a strategy for offline LC-MALDI MS/MS analysis using a precursor ion exclusion list consisting of all identified peptides in preceding runs. The exclusion list eliminated redundant MS/MS acquisitions in subsequent runs, thus reducing MALDI sample depletion and allowing identification of a larger number of peptide identifications in the cumulative dataset. In the analysis of the digest of an Escherichia coli lysate, the exclusion list strategy resulted in a 25% increase in the number of unique peptide identifications in the second run, in contrast to simply pooling MS/MS data from two replicate runs. To reduce the increased LC analysis time for repeat runs, a four-column multiplexed LC system was developed to carry out separation simultaneously. The multiplexed LC-MALDI MS provides a high-throughput platform to utilize the exclusion list strategy in proteome analysis.  相似文献   

2.
The formation of multiply charged molecular ions via the field-assisted ion evaporation mechanism during electrospray ionization enables the use of an atmospheric pressure ionization quadrupole mass spectrometer system for characterizing biologically important peptides. The straightforward implementation of high-performance liquid chromatography (HPLC) into this new strategy to determine the molecular weight of tryptic peptides via the pneumatically assisted electrospray (ion spray) interface is presented. Examples utilizing both microbore (1.0 mm) and standard bore (4.6 mm) inside diameter columns are shown for the LC/MS molecular weight determination of tryptic peptides in methionyl-human growth hormone (met-hGH). Injected levels from 50 to 75 pmol of tryptic digest onto 1 mm i.d. HPLC columns provided full-scan LC/MS or LC/MS/MS results without postcolumn splitting of the effluent. When standard 4.6 mm i.d. HPLC columns were used, a 20:1 postcolumn split was utilized, which required from 1 to 5 nmol of injected tryptic digest for full-scan LC/MS or LC/MS/MS results. Collision-induced dissociation (CID) mass spectra resulting from either "infusion" or on-line LC/MS/MS analysis of the abundant doubly charged ions that predominate for tryptic peptides under electrospray conditions provided structurally useful sequence information for met-hGH and human hemoglobin tryptic digests. The slower mass spectrometer scan rate used during infusion of sample provides more accurate mass assignments than on-line LC/MS or LC/MS/MS, but the latter on-line experiments preclude ambiguities caused by matrix or component interferences. However, in some instances very weak CID product ions preclude complete tryptic peptide structural characterization based upon the CID data alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A novel interfacing technology is described to combine solution-based separation techniques such as liquid chromatography (LC) with matrix-assisted laser desorption ionization (MALDI) mass spectrometry. The interface includes a transfer tube having an inlet and an outlet, the inlet being adapted to accept the LC effluents and the outlet being adapted to form continuously replaced, hanging droplets of the liquid stream, and a MALDI sample plate mounted below the outlet of the transfer tube for collecting the droplets. The liquid stream in the transfer tube is heated to a temperature sufficient to cause partial evaporation of the carrier solvent from the hanging droplets. The droplets are dislodged to the MALDI plate, which is heated to above the boiling point of the carrier solvent to cause further evaporation of the carrier solvent from the collected droplets. It is found that analytes can be fractionated and deposited to a sample spot of 0.8 mm in diameter when a liquid flow rate of up to 50 microL/min and a fractionation interval of 1 min/spot are used. Flow rate of up to 200 microL/min can be used with a deposition sample spot of 2.4 mm in diameter on a commercial MALDI target. This heated droplet interface does not introduce sample loss, and the detection sensitivity of LC/MALDI is similar to that of standard MALDI, i.e., low femtomoles for peptide analysis with a microliter sample deposition. It is compatible with microbore and narrow-bore column separation, thus allowing the injection of a larger amount of sample for separation and analysis, compared to a capillary column LC/MALDI system. The detection dynamic range is shown to be in the order of 10(6) for peptide mixture analysis, which is 4 orders of magnitude greater than standard MALDI. The application of this interface for combining LC with MALDI MS/MS is demonstrated in the proteome analysis of water-soluable protein components of E. coli K12 extracts.  相似文献   

4.
High-speed, high-resolution LC separations, using a poly(styrene-divinylbenzene) monolithic column, have been coupled to MALDI MS and MS/MS through an off-line continuous deposition interface. The LC eluent was mixed with alpha-cyano-4-hydroxycinnamic acid matrix solution and deposited on a MALDI plate that had been precoated with nitrocellulose. Deposition at subatmospheric pressure (80 Torr) formed a 250-microm-wide serpentine trace with uniform width and microcrystalline morphology. The deposited trace was then analyzed in the MS mode using a MALDI-TOF/TOF MS instrument. Continuous deposition allowed interrogation of the separation with a high data sampling rate in the chromatographic dimensions, thus preserving the high resolution of narrow peaks (3-5-s peak width at half-height) of the fast monolithic LC. No extracolumn band broadening due to the deposition process was observed. Over 2000 components were resolved in a 10-min linear gradient separation of the model sample, and 386 unique peptides were identified in the subsequent MS/MS analysis. The continuous deposition interface allows the coupling of high-resolution separations to MALDI MS without degradation in separation efficiency, thus enabling high-throughput proteome analysis.  相似文献   

5.
Elution-modified displacement chromatography (EMDC) was employed to achieve peptide separations with high efficiency. On-line ESI-MS and ESI-MS/MS measurements showed enrichment and detection of kemptide, a protein kinase A peptide substrate, at low femtomole levels when it was added as a trace marker component to a tryptic digest of bovine serum proteins or to a human growth hormone peptide digest at concentration ratios between 1:10(5) and 1:10(6). In another EMDC separation, five peptides were detected in a mixture containing 20 fmol of human growth hormone tryptic digest mixed with the bovine serum protein digest. We found that EMDC facilitated rapid detection and sequence analysis of trace peptides at levels of approximately 0.5 fmol/microL in complex peptide mixtures with a wide dynamic concentration range. Accordingly, the detection of kemptide by EMDC was found to be 3-4 orders of magnitude more sensitive than that attained in conventional linear elution chromatography separations performed with the same peptide loads. Kemptide was phosphorylated in vitro and was detected along with its neutral loss product in peptide mixtures at low femtomole levels. EMDC enabled both detection and amino acid sequence determination on trace levels of phosphorylated and other posttranslationally modified peptides, suggesting that the technique may be useful for proteomics applications where detection and analysis of trace level peptides are problematic.  相似文献   

6.
In this paper, the preparation and performance of long, high-efficiency poly(styrene-divinylbenzene) (PS-DVB), 10-microm-i.d. porous layer open tubular (PLOT) capillary columns are described. PLOT capillaries ( approximately 3% RSD column-to-column retention time), with relatively high permeability, were prepared by in-situ polymerization. Relatively high loading capacities, approximately 100 fmol for angiotensin I and approximately 50 fmol for insulin, were obtained with a 4.2 m x 10-microm-i.d. PLOT column. Low detection levels (attomole to sub-attomole) were achieved when the column was coupled on-line with a linear ion trap MS (LTQ). Analysis of human epidermal growth factor receptor (EGFR), a large transmembrane tyrosine kinase receptor with heterogeneous phosphorylation and glycosylation structures, was obtained at the 25 fmol level. The PLOT column yielded a peak capacity of approximately 400 for the separation of a complex tryptic digest mixture when the sample preparation included a 50-microm-i.d. PS-DVB monolithic precolumn and ESI-MS detection. As an example of the power of the column, 3046 unique peptides covering 566 distinct Methanosarcina acetivorans proteins were identified from a 50 ng in-gel tryptic digest sample combining five cuts in a single LC/MS/MS analysis using the LTQ. The results demonstrate the potential of the PLOT column for high-resolution LC/MS at the ultratrace level.  相似文献   

7.
A very high pressure liquid chromatography (VHPLC) system was constructed by modifying a commercially available pump in order to achieve pressures in excess of 1,200 bar (17,500 psi). A computer-controlled low-pressure mixer was used to generate solvent gradients. Protein digests were rapidly analyzed by reversed-phase VHPLC with linear solvent gradients coupled to either a tandem mass spectrometer using electrospray ionization or a UV/visible detector. The separations were performed at pressures ranging from 790 (11,500 psi) to 930 bar (13,500 psi) in 22-cm-long capillary columns packed with C18-modified 1.5-microm nonporous silica particles. A digest of bovine serum albumin (BSA) was analyzed by the VHPLC system connected to a mass spectrometer in MS mode. An analysis of 12.5 fmol of sample gave signal-to-noise ratios of tryptic peaks greater than 10:1 in the base peak plot mass chromatogram. This system was also used to analyze a proteolytic digest of a rat liver protein excised from a 2-D gel separation of a liver tissue lysate. For this analysis, the mass spectrometer was set up to perform data-dependent scanning (automated switching from MS mode to MS/MS mode when a peak was detected) for peptide sequencing and protein identification by database searching. The results of this analysis are compared to an analysis performed on the same sample using the nanoelectrospray-MS/MS technique. Though both techniques were able to identify the unknown protein, the VHPLC method gave twice as many sequenced peptides as nanoelectrospray and improved the signal-to-noise ratio of the spectra by at least a factor of 10. Direct comparisons with nanoelectrospray for MS and MS/MS data acquisition from a BSA digest were made. These comparisons show enhancements of greater than 20-fold for VHPLC over nanoelectrospray. In addition, the VHPLC/MS/MS data acquisition was accomplished in an automated manner.  相似文献   

8.
This work explores the use of 20-microm-i.d. polymeric polystyrene-divinylbenzene monolithic nanocapillary columns for the LC-ESI-MS analysis of tryptic digest peptide mixtures. In contrast to the packing of microparticles, capillary columns were prepared, without the need of high pressure, in fused-silica capillaries, by thermally induced in situ copolymerization of styrene and divinylbenzene. The polymerization conditions and mobile-phase composition were optimized for chromatographic performance leading to efficiencies over 100000 plates/m for peptide separations. High mass sensitivity (approximately 10 amol of peptides) in the MS and MS/MS modes using an ion trap MS was found, a factor of up to 20-fold improvement over 75-microm-i.d. nanocolumns. A wide linear dynamic range (approximately 4 orders of magnitude) was achieved, and good run-to-run and column-to-column reproducibility of isocratic and gradient elution separations were found. As samples, both model proteins and tissue extracts were employed. Gradient nano-LC-MS analysis of a proteolytic digest of a tissue extract, equivalent to a sample size of approximately 1000 cells injected, is presented.  相似文献   

9.
We describe the coupling of liquid chromatography (LC) separations with mass spectrometry (MS) using nanoelectrospray ionization (nano-ESI) multiemitters. The array of 19 emitters reduced the flow rate delivered to each emitter, allowing the enhanced sensitivity that is characteristic of nano-ESI to be extended to higher flow rate separations. The signal for tryptic fragments from proteins spiked into a human plasma sample increased 11-fold on average when the multiemitters were employed, due to increased ionization efficiency and improved ion transfer efficiency through a newly designed heated multicapillary MS inlet. Additionally, the LC peak signal-to-noise ratio increased approximately 7-fold when the multiemitter configuration was used. The low dead volume of the emitter arrays preserved peak shape and resolution for robust capillary LC separations using total flow rates of 2 microL/min.  相似文献   

10.
Xu S  Ye M  Xu D  Li X  Pan C  Zou H 《Analytical chemistry》2006,78(8):2593-2599
High concentrations of urea and guanidine hydrochloride are commonly used for the denaturation of protein, which was digested by enzymatic proteolysis for the identification by MS analysis. The presence of these contaminants seriously suppresses the ion signal of analytes in MALDI-TOF MS analysis. Herein, a novel MALDI matrix, 3, 4-diaminobenzophenone (DABP), has been found with high tolerance for these contaminants in MALDI MS analysis. The ion signal of analyte insulin can be detected in the presence of 2 M guanidine hydrochloride and 1.5 M urea using DABP as matrix. The tryptic digest of BSA (400 fmol) in 1 M guanidine hydrochloride or 1 M urea was successfully analyzed without any pretreatment prior to MS analysis. Furthermore, it has been found that this matrix can also effectively suppress the cation ion adduction of the peptides in the presence of high concentrations of metal ions in sample solution.  相似文献   

11.
We describe approaches for proteomics analysis using electrospray ionization-tandem mass spectrometry coupled with fast reversed-phase liquid chromatography (RPLC) separations. The RPLC separations used 50-microm-i.d. fused-silica capillaries packed with submicrometer-sized C18-bonded porous silica particles and achieved peak capacities of 130-420 for analytes from proteome tryptic digests. When these separations were combined with linear ion trap tandem mass spectrometry measurements, approximately 1000 proteins could be identified in 50 min from approximately 4000 identified tryptic peptides; approximately 550 proteins in 20 min from approximately 1800 peptides; and approximately 250 proteins in 8 min from approximately 700 peptides for a S. oneidensis tryptic digest. The dynamic range for protein identification with the fast separations was determined to be approximately 3-4 orders of magnitude of relative protein abundance on the basis of known proteins in human blood plasma analyses. We found that 55% of the MS/MS spectra acquired during the entire analysis (and up to 100% of the MS/MS spectra acquired from the most data-rich zone) provided sufficient quality for identifying peptides. The results confirm that such analyses using very fast (minutes) RPLC separations based on columns packed with microsized porous particles are primarily limited by the MS/MS analysis speed.  相似文献   

12.
A new multichannel deposition system was developed for off-line liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry (LC/MALDI-MS). This system employs a pulsed electric field to transfer the eluents from multiple parallel columns directly onto MALDI targets without the column outlets touching the target surface. The deposition device performs well with a wide variety of solvents that have different viscosities, vapor pressures, polarities, and ionic strengths. Surface-modified targets were used to facilitate concentration and precise positioning of samples, allowing for efficient automation of high-throughput MALDI analysis. The operational properties of this system allow the user to prepare samples using MALDI matrixes whose properties range from hydrophilic to hydrophobic. The latter, exemplified by alpha-cyano-4-hydroxycinnamic acid, were typically processed with a multistep deposition method consisting of precoating of individual spots on the target plate, sample deposition, and sample recrystallization steps. Using this method, 50 amol of angiotensin II was detected reproducibly with high signal-to-noise ratio after LC separation. Experimental results show that there is no significant decrease in chromatographic resolution using this device. To assess the behavior of the apparatus for complex mixtures, 5 microg of a tryptic digest of the cytosolic proteins of yeast was analyzed by LC/MALDI-MS and more than 13,500 unique analytes were detected in a single LC/MS analysis.  相似文献   

13.
A mini ball mill (MBM) solvent-free matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) method allows for the analysis of bacteriorhodopsin (BR), an integral membrane protein that previously presented special analytical problems. For well-defined signals in the molecular ion region of the analytes, a desalting procedure of the MBM sample directly on the MALDI target plate was used to reduce adduction by sodium and other cations that are normally attendant with hydrophobic peptides and proteins as a result of the sample preparation procedure. Mass analysis of the intact hydrophobic protein and the few hydrophobic and hydrophilic tryptic peptides available in the digest is demonstrated with this robust new approach. MS and MS/MS spectra of BR tryptic peptides and intact protein were generally superior to the traditional solvent-based method using the desalted "dry" MALDI preparation procedure. The solvent-free method expands the range of peptides that can be effectively analyzed by MALDI-MS to those that are hydrophobic and solubility-limited.  相似文献   

14.
A nanostructured diamond-like carbon (DLC) coated digital versatile disk (DVD) target is presented as a matrix-free sample support for application in laser desorption/ionization mass spectrometry (LDI-MS). A large number of vacancies, defects, relative sp(2) carbon content, and nanogrooves of DLC films support the LDI phenomenon. The observed absorptivity of DLC is in the range of 305-330 nm (nitrogen laser, 337 nm). The universal applicability is demonstrated through different analytes like amino acids, carbohydrates, lipids, peptides, and other metabolites. Carbohydrates and amino acids are analyzed as sodium and potassium adducts. Peptides are detectable in their protonated forms, which avoid the extra need of additives for ionization. A bovine serum albumin (BSA) digest is analyzed to demonstrate the performance for peptide mixtures, coupled with the material-enhanced laser desorption/ionization (MELDI) approach. The detection limit of the described matrix-free target is investigated to be 10 fmol/microL for [Glu(1)]-fibrinopeptide B (m/z 1570.6) and 1 fmol/microL for L-sorbose (Na(+) adduct). The device does not require any chemical functionalization in contrast to other matrix-free systems. The inertness of DLC provides longer lifetimes without any deterioration in the detection sensitivity. Broad applicability allows high performance analysis in metabolomics and peptidomics. Furthermore the DLC coated DVD (1.4 GB) sample support is used as a storage device for measured and processed data together with sampling on a single device.  相似文献   

15.
This study describes a methodology for performing relative quantitation in large-scale proteomic sample comparisons using an LC-MALDI mass spectrometry analytical platform without the use of isotope tagging reagents. The method utilizes replicate analyses of a sample to create a profile of constituent components that are aligned based on LC elution time and mass. Once components from individual runs have been grouped as common "features", the Student's t test is used to determine which components are systematically different between samples. In this study, five HPLC runs of human plasma were compared to five HPLC runs of human serum. About 3889 components were detected in all 10 runs. Of these, 1831 corresponded to approximately 100 known serum proteins, based on MS/MS analysis of one run each from serum and plasma. As expected, fibrinogen alpha, beta, and gamma chains accounted for many of the most significant differences. Therefore, using MALDI, samples containing thousands of peptides can be compared in a minimal amount of time. Moreover, the results of the comparison can be used to guide further MS/MS mode sample interrogation in a result dependent manner.  相似文献   

16.
Primary protein sequences were determined for both peptides and enzymatically digested proteins by rapid linked-scan (B/E) liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) at the low-picomole level (10-50 pmol). During the course of a single LC/MS/MS analysis, we demonstrated that it is possible to generate interpretable collision-induced dissociation spectra of the eluting proteolytic peptides. Molecular weights of tryptic peptides were established by using 1/10 of the protein digest by operating in the capillary LC/frit-FABMS mode. Peptides exhibiting the strongest MH+ ions were then selected for subsequent LC/MS/MS analysis (typically 1/5 of the remaining protein digest). Elution times for each chromatographic peak were generally greater than 30 s. It was therefore possible to obtain a minimum of six B/E fast linked-scan spectra during the course of elution of each peptide component. Typically, B/E linked scans of the greatest ion abundance (obtained at the chromatographic peak maximum) were averaged to enhance the signal/noise ratio at these low-picomole levels. Unit resolution was observed for product ions below m/z 1000. Rapid linked scanning by LC/frit-FABMS/MS provided mass assignments for product ions within 0.2-0.3 amu of theoretical values. Side-chain fragment ions (wn and dn) were also observed, which allowed for the differentiation of isobaric amino acids (e.g., leucine and isoleucine). Examples of the application of this fast linked-scan technique to LC/MS/MS are presented for complex mixtures of unknown peptides and the tryptic digestion of phosphorylated beta-casein.  相似文献   

17.
Ultrasensitive nanoscale proteomics approaches for characterizing proteins from complex proteomic samples of <50 ng of total mass are described. Protein identifications from 0.5 pg of whole proteome extracts were enabled by ultrahigh sensitivity (<75 zmol for individual proteins) achieved using high-efficiency (peak capacities of approximately 10(3)) 15-microm-i.d. capillary liquid chromatography separations (i.e., using nanoLC, approximately 20 nL/min mobile-phase flow rate at the optimal linear velocity of approximately 0.2 cm/s) coupled on-line with a micro-solid-phase sample extraction and a nanoscale electrospray ionization interface to a 11.4-T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (MS). Proteome measurement coverage improved as sample size was increased from as little as 0.5 pg of sample. It was found that a 2.5-ng sample provided 14% coverage of all annotated open reading frames for the microorganism Deinococcus radiodurans, consistent with previous results for a specific culture condition. The estimated detection dynamic range for detected proteins was 10(5)-10(6). An improved accurate mass and LC elution time two-dimensional data analysis methodology, used to both speed and increase the confidence of peptide/protein identifications, enabled identification of 872 proteins/run from a single 3-h nanoLC/FTICR MS analysis. The low-zeptomole-level sensitivity provides a basis for extending proteomics studies to smaller cell populations and potentially to a single mammalian cell. Application with ion trap MS/MS instrumentation allowed protein identification from 50 pg (total mass) of proteomic samples (i.e., approximately 100 times larger than FTICR MS), corresponding to a sensitivity of approximately 7 amol for individual proteins. Compared with single-stage FTICR measurements, ion trap MS/MS provided a much lower proteome measurement coverage and dynamic range for a given analysis time and sample quantity.  相似文献   

18.
Phosphopeptides are often detected with low efficiency by MALDI MS analysis of peptide mixtures. In an effort to improve the phosphopeptide ion response in MALDI MS, we investigated the effects of adding low concentrations of organic and inorganic acids during peptide sample preparation in 2,5-dihydroxybenzoic acid (2,5-DHB) matrix. Phosphoric acid in combination with 2,5-DHB matrix significantly enhanced phosphopeptide ion signals in MALDI mass spectra of crude peptide mixtures derived from the phosphorylated proteins alpha-casein and beta-casein. The beneficial effects of adding up to 1% phosphoric acid to 2,5-DHB were also observed in LC-MALDI-MS analysis of tryptic phosphopeptides of B. subtilis PrkC phosphoprotein. Finally, the mass resolution of MALDI mass spectra of intact proteins was significantly improved by using phosphoric acid in 2,5-DHB matrix.  相似文献   

19.
Wang J  Chen R  Ma M  Li L 《Analytical chemistry》2008,80(2):491-500
Recently developed sample preparation techniques employing hydrophobic sample support have improved the detection sensitivity and mass spectral quality of matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). These methods concentrate the samples on target by minimizing the sample area via the solvent repellent effect of the target surface. In the current study, we employed the use of paraffin wax film (Parafilm M) for improved MALDI MS analysis of low-abundance peptide mixtures, including neuronal tissue releasate and protein tryptic digests. This thin film was found to strongly repel polar solvents including water, methanol, and acetonitrile, which enabled the application of a wide range of sample preparation protocols that involved the use of various organic solvents. A "nanoliter-volume deposition" technique employing a capillary column has been used to produce tiny ( approximately 400 microm) matrix spots of 2,5-dihydroxybenzoic acid on the film. By systematically optimizing the sample volume, solvent composition, and film treatment, the Parafilm M substrate in combination with the nanoliter-volume matrix deposition method allowed dilute sample to be concentrated on the film for MALDI MS analysis. Peptide mixtures with nanomolar concentrations have been detected by MALDI time-of-flight and MALDI Fourier transform ion cyclotron resonance mass spectrometers. Overall, the use of Parafilm M enabled improved sensitivity and spectral quality for the analysis of complex peptide mixtures.  相似文献   

20.
Multidimensional protein chromatography offers an alternative to gel-based separations for large-scale proteomic analyses of highly complex mixtures. However, these liquid separations divide the original mixtures into multitudes of discrete samples, each of which may require numerous steps of sample manipulation, such as fraction collection, buffer exchange, protease digestion, peptide desalting, and, in the case of MALDI-MS, matrix and analyte cocrystallization on target. When traditional high-flow liquid chromatography is used, large volumes of solvent must also be removed from fractions to maximize MS sensitivity. Although robotic liquid-handling devices can facilitate these steps and reduce analyst/sample contact, they remain prototypic and expensive. Here, we explore the use of a novel, one-piece elastomeric device, the BD MALDI sample concentrator, which affixes to a MALDI target to create a prestructured 96-well sample array on the target surface. We have developed methodologies to process high-flow HPLC fractions by collecting them directly into the elastomeric device and then subjecting them to sequential on-target sample concentration, buffer exchange, digestion, desalting, and matrix/analyte cocrystallization for MALDI-MS analyses. We demonstrate that this methodology enables the rapid digestion and analysis of low amounts of proteins and that it is effective in the characterization of an HPLC-fractionated protein mixture by MALDI-TOF MS followed by peptide mass fingerprinting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号