首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
利用高长径比的纤维素纳米纤丝(CNF)与片层结构的氧化石墨烯(GO)形成的CNF-GO复合水凝胶经抗坏血酸还原制备出CNF-还原氧化石墨烯(rGO)复合水凝胶材料。通过冷冻干燥法得到CNF-rGO复合气凝胶,并进一步通过苯胺单体在CNF-rGO复合气凝胶的孔道内原位聚合制备出CNF-rGO/聚苯胺(PANI)气凝胶柔性电极复合材料。研究了不同苯胺、CNF和GO的质量比对CNF-rGO/PANI气凝胶柔性电极复合材料的结构形貌和电化学性能的影响。结果表明,苯胺原位聚合后所得CNF-rGO/PANI复合气凝胶仍具有紧密的三维多孔网络结构。与rGO/PANI气凝胶电极复合材料相比,CNF-rGO/PANI气凝胶电极复合材料具有更理想的电容行为。当CNF与GO质量比为60∶40,PANI添加量为0.1 mol时,CNF-rGO/PANI气凝胶电极复合材料比电容可达85.9 Fg-1,且其电化学性能几乎不受弯曲程度的影响,展现出了良好的柔韧性和电化学性能。   相似文献   

2.
选用合适的软模板,通过简便的一步溶剂热法成功制备了NiS2/三维多孔石墨烯(3D rGO)复合材料。利用FESEM、TEM、XPS和电化学工作站对样品的表面形貌、元素价态和电化学性能进行表征。结果表明:制备的NiS2/3D rGO复合材料存在石墨烯三维堆叠的孔道结构,且具备较大的比表面积,为57.51 m2g-1。电化学测试表明,在1 Ag-1的电流密度下NiS2/3D rGO复合材料的比电容高达1 116.7 Fg-1,而且当电流密度增加到5 Ag-1时NiS2/3D rGO复合材料的比电容为832.2 Fg-1,比电容保持率为1 Ag-1时的74.5%。在4 Ag-1电流密度下,经过1 000次循环后,NiS2/3D rGO复合材料的比电容仍能保持91.2%。因此,NiS2/3D rGO复合材料可作为一种理想的超级电容器电极材料。   相似文献   

3.
利用以苯胺与过硫酸铵制备的聚苯胺和改进的Hummers法制备的氧化石墨烯(GO)为原料,将聚苯胺分散于GO浊液中,再对GO进行还原,制备超级电容器电极材料石墨烯(RGO)/聚苯胺(PANI)复合材料(GRP),利用X射线衍射(XRD)对其结构进行了表征,并对复合材料电化学性能进行了测试。结果表明,复合材料展示良好比电容特性,同时又具有稳定电化学性能。GRP在0.1A/g的电流密度下比电容达到510F/g,1.0A/g电流密度下比电容为485F/g,经过2000次的充放电循环后比电容保持率为92%,即复合物比电容远大于石墨烯,在化学稳定性上远好于PANI。放电响应效率高,在电极中电解质离子容易扩散和迁移。  相似文献   

4.
首先通过原位聚合的方法制备聚苯胺(PANI)包覆纤维素纳米晶(CNC)(CNC@PANI)纳米复合物,进而采用共混法制备CNC@PANI与rGO的复合电极材料(CNC@PANI/rGO)。研究不同苯胺与CNC的用量比对所得复合电极材料的结构形貌和电化学性能的影响。采用扫描电镜、X射线衍射、红外光谱以及电化学工作站等测试手段对制备的复合电极材料的结构形貌、电化学性能进行分析表征。结果表明,PANI成功地包覆在CNC的表面,且PANI通过在CNC表面的包覆,可明显改善其分散性和比表面积,以及与石墨烯的复合效果。CNC@PANI-1/rGO复合电极材料在20mV/s扫描速率下的比电容可高达309F/g,远远高于PANI/rGO复合电极材料的155F/g。  相似文献   

5.
首先通过原位聚合的方法制备聚苯胺(PANI)包覆纤维素纳米晶(CNC)(CNC@PANI)纳米复合物,进而采用共混法制备CNC@PANI与rGO的复合电极材料(CNC@PANI/rGO)。研究不同苯胺与CNC的用量比对所得复合电极材料的结构形貌和电化学性能的影响。采用扫描电镜、X射线衍射、红外光谱以及电化学工作站等测试手段对制备的复合电极材料的结构形貌、电化学性能进行分析表征。结果表明,PANI成功地包覆在CNC的表面,且PANI通过在CNC表面的包覆,可明显改善其分散性和比表面积,以及与石墨烯的复合效果。CNC@PANI-1/rGO复合电极材料在20mV/s扫描速率下的比电容可高达309F/g,远远高于PANI/rGO复合电极材料的155F/g。  相似文献   

6.
采用化学氧化法制得氧化石墨烯(GO),再用NaBH4还原得到石墨烯(GN);以二氧化锰为氧化剂,室温下通过化学氧化聚合法制备了聚苯胺/石墨烯复合材料(PANI/GN)。采用扫描电子显微镜(SEM)及X-射线衍射(XRD)对其结构和形貌进行了表征。以PANI/GN为活性物质制备电极,1.0mol/L H2SO4水溶液为电解液组装超级电容器,用循环伏安法(CV)和恒电流充放电技术分别测试了PANI/GN电化学性能,在0.1A/g的电流密度下的比容量为468.5F/g,经过1000次连续充放电,电容保持率为84.9%。与PANI、GN单一材料相比,PANI/GN复合物具有较高的比电容和很好的循环稳定性。  相似文献   

7.
采用溶剂热法制备了还原氧化石墨烯/氢氧化钴[rGO/Co(OH)_2]复合材料,通过X射线衍射、扫描电镜、拉曼光谱、热失重分析和氮气吸脱附表征了材料的形貌、结构和组成,并采用循环伏安法和恒电流充放电测试了复合材料的电化学性能。结果表明:球状的Co(OH)_2颗粒均匀分散在rGO表面形成了介孔占优的复合材料rGO/Co(OH)_2;由于Co(OH)_2和rGO的协同作用,复合材料表现出良好的电化学性能,在电流密度为1A/g时,比电容为631F/g,循环1000次后电容的保持率仍为83%。  相似文献   

8.
原位聚合制备PANI/GO复合材料及其电化学性能研究   总被引:1,自引:0,他引:1  
阮艳莉  王坤  齐平平  韩煦 《功能材料》2015,(2):2100-2104
利用原位化学氧化聚合的方法制备了聚苯胺/氧化石墨烯(PANI/GO)复合材料。通过X射线衍射(XRD)、扫描电镜(SEM)及红外光谱(IR)等方法对其结构和形貌进行了表征。利用自制的PANI/GO复合材料作为电极材料分别组装了超级电容器及锂离子电池,并对其电化学性能进行了测试。结果表明,GO在不同的电化学器件中均能够明显改善PANI的电化学性能。以PANI/GO作为超级电容器电极材料,放电时其比电容达413.28F/g,高于纯PANI的322.56F/g,1 000次循环后,容量保持率为70%。以PANI/GO作为锂离子电池正极材料,0.1C下首次放电比容量达104.4mAh/g,50次循环后,容量未见衰减。  相似文献   

9.
以氧化石墨烯(GO)为基体,采用界面聚合法制备了聚苯胺纳米纤维/氧化石墨烯的复合物(PA-NI/GO),经水合肼还原和APS再氧化得到聚苯胺纳米纤维/石墨烯复合物(PANI/GR)。用FT-IR、UV-Vis、XRD、SEM和TEM对复合物的结构和形貌进行表征,结果表明氧化石墨烯不仅为苯胺提供了聚合的基体,同时对聚苯胺有掺杂作用,聚苯胺纤维夹在片状石墨烯之间呈现"三明治"结构。通过循环伏安和恒流充放电测试发现,PANI/GR复合材料表现出双电层电容和法拉第赝电容双重特点,受协同效应的作用,在电流密度为400mA/g时,比容量高达460F/g,呈现出优异的电化学活性。  相似文献   

10.
在当今能源紧缺的情况下,超级电容器由于具有功率密度高、充放电时间短、循环寿命长等优点而被广泛应用于工业自动化控制、电力、国防以及新能源汽车等众多领域。本文以十八胺修饰的四氧化三铁纳米粒子(Fe_3O_4-ODA),氧化石墨烯(GO)以及苯胺单体为原料,通过原位聚合成功制备了Fe_3O_4-ODA/GO/PANI三元复合电极材料,其比电容高达516F/g,远高于二元复合材料GO/PANI和Fe_3O_4-ODA/PANI的比电容(分别为224F/g和345F/g)。并且,在1000次循环充放电之后,其容量仍可维持86.5%。此外,利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线粉末衍射(XRD)和傅立叶变换红外光谱仪(FT-IR)等手段对该复合材料的形貌和结构进行了表征。  相似文献   

11.
以自制聚苯胺水凝胶和氧化石墨烯为原料采用原位聚合法和溶液灌注法制备三维多孔结构的聚苯胺/氧化石墨烯复合材料,然后在氢碘酸的还原下制备聚苯胺/石墨烯复合材料。采用红外光谱法、场发射扫描电子显微镜和热重分析法对制备的复合材料的结构、形貌和组成进行表征,并采用三电极测试方式对其电化学性能进行测试。结果表明,氧化石墨烯的掺入能有效防止聚苯胺和氧化石墨烯的团聚和堆叠问题,获得了具有良好三维多孔结构的聚苯胺/氧化石墨烯复合物;聚苯胺/氧化石墨烯复合材料被氢碘酸还原后,得到的聚苯胺/石墨烯复合材料的热稳定性有所降低,但其比电容和导电性等有了很大的提高,在电流密度为0.5 A/g时,PANI/GO和PANI/r GO的比电容分别为240.38 F/g和321.91F/g。  相似文献   

12.
Zhang Y  Hu W  Li B  Peng C  Fan C  Huang Q 《Nanotechnology》2011,22(34):345601
Polyvinylpyrrolidone-protected (PVP-protected) graphene was synthesized by refluxing graphene oxide (GO) in dimethylformamide (DMF), using PVP as the dispersant. The structure and stability of this composite (DMF-rGO) were characterized using UV-vis spectroscopy, atomic force microscopy (AFM), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD) and thermogravimetric analysis (TGA). The results confirm the presence of a single sheet of DMF-rGO with PVP of 42%. This kind of chemically reduced GO has a greater solubility in water and also is more biocompatible than rGO reduced by hydrazine hydrate. This method is simple, environmentally friendly and the composite has potential applications in biology and polymer nanocomposites.  相似文献   

13.
研究以聚苯乙烯(PS)微球为模板、氧化石墨烯(GO)和钛酸四丁酯(TBT)为原料, 采用溶胶-凝胶法, 利用GO与PS上的官能团和TiO2前驱体的多重配位反应, 制备了3D多级孔rGO/TiO2(PS)复合材料。通过不同手段对样品的结构和形貌进行表征, 研究了PS添加量对rGO/TiO2复合材料晶体结构、微观形貌及光催化性能的影响。分别在模拟紫外光和可见光下, 以盐酸四环素(TTCH)为目标污染物对不同PS加入量制备的3D多级孔rGO/TiO2(PS)复合材料的光催化性能进行评价, 并在模拟可见光下, 对3D多级孔rGO/TiO2(5wt%PS)复合材料进行了多次循环回收测试。结果表明: rGO/TiO2(PS)复合材料具有3D多级孔块体结构, GO作为基体的增强相通过Ti-O-C键保持多级孔刚性骨架结构的稳定。引入PS增大了rGO/TiO2(PS)复合材料的比表面积, 3D多级孔rGO/TiO2(7wt% PS)复合材料对TTCH吸附效率最高, 而3D多级孔rGO/TiO2(5wt%PS)复合材料光催化活性和稳定性最高, 且经过4次循环回收测试, 其光催化效率仍达81.02%; 模板剂PS的最佳引入量为5wt%。  相似文献   

14.
This paper reports a facile one-step hydrothermal treatment of graphene oxide (GO) and cobalt acetate (Co(Ac)2) for preparing reduced GO (rGO)/Co3O4 composites which were used as electrode materials for supercapacitors containing electrolytes of 2 M KOH aqueous solution. The morphologies and structures of rGO/Co3O4 composites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectrum, and N2 adsorption–desorption isotherms. The electrochemical performances of two-electrode supercapacitors were evaluated by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy techniques. During the hydrothermal reaction, GO was reduced and 10–30 nm-sized Co3O4 nanoparticles were in situ grown onto the rGO sheets simultaneously. The effects of mass ratios of GO and Co(Ac)2 on the performances of supercapacitors were investigated. In comparison with pure Co3O4-based supercapacitor, supercapacitors based on rGO/Co3O4 composites show better performances because both the specific surface areas and the electrical conductivities of electrode materials were increased by the introduction of rGO. When the mass ratio of GO and Co(Ac)2 is 1:2, rGO/Co3O4 composite electrode exhibits the highest capacitance of 263.0 F/g at a constant current density of 0.2 A/g in a two-electrode supercapacitor. In addition, the supercapacitor shows high rate capability and long cyclic durability.  相似文献   

15.
以天然鳞片石墨为原料制备氧化石墨(GO), 应用水热法制备钴锌铁氧体(Co0.5Zn0.5Fe2O4), 并将两者制备成石墨烯(rGO)/Co0.5Zn0.5Fe2O4复合材料。采用X射线衍射(XRD)、拉曼光谱(Raman)、红外光谱(FT-IR)研究rGO/Co0.5Zn0.5Fe2O4的结构; 应用透射电子显微镜(TEM)和矢量网络分析仪(VNA)研究不同复合比例对rGO/Co0.5Zn0.5Fe2O4复合材料形貌、电磁损耗特性、德拜弛豫模型及电磁响应行为的影响。结果表明: 复合反应后的GO在XRD图谱中主衍射峰由2θ=9.74°变化为2θ=24.15°, 且红外光谱图中显示含氧官能团消失, 均说明GO成功还原为rGO。透射电子显微镜图中可以看到Co0.5Zn0.5Fe2O4嵌布在rGO上。复合反应过程中, 当钴锌铁氧体的含量增大, 分散性逐渐减弱。Co0.5Zn0.5Fe2O4与GO质量比为2 : 1时制备的rGO/Co0.5Zn0.5Fe2O4复合材料的吸波性能最佳, 在15.11 GHz处反射率达到最小值-36.89 dB, 有效吸波频带宽为3.74。  相似文献   

16.
采用超声辅助Hummers法制得厚度约为1 nm的氧化石墨烯, 以其为氧化介质与苯胺反应合成了石墨烯/聚苯胺(RGO/PANI)导电复合材料。利用AFM、SEM、XRD和FTIR对反应所得产物进行了表征。结果表明: 苯胺在略高于室温的酸性水溶液中可以对氧化石墨烯(GO)进行还原, 而苯胺自身则被氧化石墨烯中大量的含氧基团氧化并发生聚合反应, 最终生成RGO/PANI导电复合材料, 当苯胺用量为1 mL, 氧化石墨烯用量为0.1 g, 在水浴温度为70 ℃下剧烈搅拌24 h时, 获得的RGO/PANI复合材料导电性最佳, 约为10 S/cm。  相似文献   

17.
以氧化石墨烯(GO)和硝酸银为原材料,聚乙烯吡咯烷酮(PVP)为还原剂和稳定剂,通过水热法制备出还原氧化石墨烯/银纳米颗粒(rGO/AgNPs)复合材料。采用透射电子显微镜(TEM)、X射线衍射(XRD)及紫外-可见分光光度计(UV-Vis)对rGO/AgNPs复合材料的形貌、组成和结构进行表征。同时,将rGO/AgNPs复合材料修饰到玻碳电极表面制备出过氧化氢(H_2O_2)电化学传感器,通过循环伏安法(CV)和计时安培响应法(i-t)对传感器进行电化学性能测试。实验结果表明:制备的rGO/AgNPs传感器具有较好的电化学性能,其对H_2O_2检测的灵敏度为340.6μA·(mmol/L)~(-1)·cm~(-2),响应时间为3s,最低检测极限为7.5μmol/L(S/N=3),线性检测范围为20~4950μmol/L(线性相关系数为R=0.9973)。  相似文献   

18.
An eco-friendly and effective reducing agent to convert Graphene Oxide (GO) to reduced Graphene Oxide (rGO) is reported. The oxygen scavenging property of Aloe vera (L.) Burm.f. (AV) extract is successfully utilized to remove oxygen functionalities on GO. The synthesized reduced Graphene oxide (ARGO) is analyzed using UV–Visible spectroscopy, Raman spectroscopy and FT-IR analysis. Complete GO reduction is achieved within 3 h with 30 mM AV extract and is confirmed by the XRD results. The high resolution transmission electron microscopy images provide clear evidence for the formation of single layer of graphene (rGO). The mechanism of reduction of GO by the AV extract is proposed. The rGO shows good charge storage properties with stable cycling up to 1000 cycles, demonstrated by the electrochemical method. The findings suggest that the Aloe vera (L.) Burm.f. (AV) extract reduced graphene oxide was found to be suitable for supercapacitor applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号