首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
ABSTRACT

To demonstrate printability and fire performance of 3D printable fibre reinforced cementitious materials at elevated temperatures, large-scaling printing and fire performance testing are required for engineering applications. In this work, a mixture design of 3D printable fibre reinforced cementitious composite (3DPFRCC) for large-scale printing was developed. A structure with dimensions of 78 × 60 × 90?cm (L × W × H) was printed by a gantry printer in 150?min, which demonstrates that the developed 3DPFRCC mixture possesses good buildability. The rheological property, setting-time, and mechanical properties under normal and elevated temperatures of the developed 3DPFRCC were then characterised. Final results indicate that the developed 3DPFRCC is suitable for engineering applications due to its good printability and mechanical properties under normal and elevated temperatures.  相似文献   

2.
Evaluation of the consistency of fiber reinforced cementitious composites   总被引:1,自引:1,他引:0  
The rheological properties of fresh concrete, mortar or cement paste are among the most important parameters when cementitious building materials are placed. New material designs, like high or ultrahigh performance concretes, include the addition of a high volume of fibers to the fresh mix influencing its workability properties. However, the analysis of the rheological properties of fiber reinforced cementitious composites is difficult. Conventional methods mostly do not apply, especially when a high fiber content and relatively stiff mixtures are used. For this reason, a new method was developed to evaluate the workability of fiber reinforced composites. This method was applied to carbon and PVA fiber reinforced high performance composites and was used to optimize the rheological properties of these composites for an application in a centrifugation casting process.  相似文献   

3.
Rheological measurements and extrusion tests are used to evaluate the viability of high mass fraction (80% solids content) wet granular materials for extrusion-based 3D printing. Such materials have diverse applications from making dense, strong ceramic custom parts to 3D printing uniquely shaped energetic materials. Traditionally, 3D-printed colloidal materials use much lower mass fraction inks, and hence, those technologies will not work for systems requiring higher mass fraction solids content. These wet granular materials are highly non-Newtonian presenting non-homogenous flows, shear thinning, yield stress, and high elasticity. Such behaviors improve some aspects of print quality, but make printing very difficult. In this work, the relationship between the rheological behavior of wet granular materials and the processing parameters that are necessary for successfully extruding these materials for printing is examined. In the future, such characterizations will provide key indicators on how to alter printer design/operating conditions and adjust material behavior in order to improve printability. This study is a fundamental first step to successfully developing 3D printing technology of wet granular materials.  相似文献   

4.
石墨烯优异的力学和物理性能使其成为理想的储能材料。因结构精确可控,易实现规模化制备,3D打印石墨烯材料有望在储能领域得到广泛应用。本文全面综述了3D打印石墨烯制备技术及其在储能领域的应用研究进展。石墨烯墨水的黏度和可打印性是实现石墨烯3D打印的制约因素。实现工艺简单、浓度可控、无黏结剂石墨烯墨水的规模化打印将成为3D打印石墨烯制备技术未来的研究热点。石墨烯超级电容器、锂硫电池、锂离子电池等储能元件一体化打印成型是3D打印石墨烯在储能领域应用的发展方向。  相似文献   

5.
Concrete properties to a large extent depend on mix design and processing, currently leaving only limited options to actively modify concrete properties during or after casting. This paper gives a (p)review on a more advanced active control of properties of concrete, based on the application of external signals to trigger an intended response in the material, either in fresh or hardened state. Current practices in concrete industry that could be considered as active control are briefly summarized. More advanced active control mechanisms as studied in other fields, e.g. based on hydrogels and other functional polymers, are reviewed and some principles are listed. A specific focus is further given on potential methods for active rheology control. Based on the concepts developed in other fields, substantial progress could be made in order to achieve active control of fresh and hardened concrete properties. However, several challenges remain, like the stability and functioning of the responsive material in a cementitious environment, the applicability of the control signal in a cementitious material, and the economy, logistics and safety of a control system on a construction site or in precast industry. Finding solutions to these challenges will lead to marvelous opportunities in general, and for 3D and even 4D printing more particularly.  相似文献   

6.
Recent advances in materials science and three‐dimensional (3D) printing hold great promises to conceive new classes of multifunctional materials and components for functional devices and products. Various functionalities (e.g., mechanical, electrical, and thermal properties, magnetism) can be offered by the nano‐ and micro‐reinforcements to the non‐functional pure printing materials for the realization of advanced materials and innovative systems. In addition, the ability to print 3D structures in a layer‐by‐layer manner enables manufacturing of highly‐customized complex features and allows an efficient control over the properties of fabricated structures. Here, the authors present a brief overview mainly over the latest progresses in 3D printing of multifunctional polymer nanocomposites and microfiber‐reinforced composites including the benefits, limitations, and potential applications. Only those 3D printing techniques that are compatible with polymer nanocomposites and composites, that is, materials that have already been used as printing materials, are introduced. The very hot topic of 3D printing of thermoplastic composites featuring continuous microfibers is also briefly introduced.  相似文献   

7.
目的 半结晶性聚乳酸(PLA)因透明性好、力学性能优异、能生物降解等优点,在加工领域表现出适用范围广等特性,因此对PLA基复合材料在3D打印技术中的研究应用及最新进展状况进行总结,以期提供借鉴与参考。方法 以熔融沉积成型(FDM)、PLA基体为主线,在查阅近年中外文献基础上,分别从PLA结构性能、3D打印成型工艺、PLA基复合材料改性等方面进行了探讨,着重分析工艺参数的技术优化,以及复合材料的结构改性最新研究进展。结果 FDM制备PLA基复合材料的研究取得了丰硕的成果,在3D打印行业中表现优异,潜力巨大,商品化程度越来越高。结论 低廉、高效、可定制的3D打印受到国内外科研工作者广泛关注与青睐,随着新技术的不断探索和突破,以及纳米材质和新型聚合物材料等新型材质应用,使3D打印在成型加工技术上占据绝对优势。  相似文献   

8.
冯东  王博  刘琦  陈朔  陈刚  胡天丁 《复合材料学报》2021,38(5):1371-1386
3D打印又称增材制造技术,是基于材料、机械控制、计算机软件等多学科交叉的先进制造技术,可得到传统加工不能制备的形状复杂制件。熔融沉积成型(FDM)是目前最通用的3D打印技术之一,具有设备简单、成本低、操作便捷等特点,广泛应用于航空航天、医疗、汽车工业等领域。本文介绍了国内外3D打印技术的整体布局、发展和规划,总结了常见3D打印技术的特点和分类。系统地介绍了FDM加工技术的原理和优势,阐明了 FDM加工对高分子材料的基本要求,介绍了碳基高分子复合材料在FDM加工中的应用。此外,详细综述了国内外基于FDM打印技术制造功能化高分子复合材料及器件的最新研究进展,其中包括FDM打印制造导电高分子复合材料、导热高分子复合材料及生物医用高分子复合材料等,以期为FDM制造高性能多功能高分子复合材料的研究及应用提供借鉴。并对FDM加工面临的挑战及需要解决的关键问题提出了思考并做出展望。   相似文献   

9.
The integration of nanotechnology into three‐dimensional printing (3DP) offers huge potential and opportunities for the manufacturing of 3D engineered materials exhibiting optimized properties and multifunctionality. The literature relating to different 3DP techniques used to fabricate 3D structures at the macro‐ and microscale made of nanocomposite materials is reviewed here. The current state‐of‐the‐art fabrication methods, their main characteristics (e.g., resolutions, advantages, limitations), the process parameters, and materials requirements are discussed. A comprehensive review is carried out on the use of metal‐ and carbon‐based nanomaterials incorporated into polymers or hydrogels for the manufacturing of 3D structures, mostly at the microscale, using different 3D‐printing techniques. Several methods, including but not limited to micro‐stereolithography, extrusion‐based direct‐write technologies, inkjet‐printing techniques, and popular powder‐bed technology, are discussed. Various examples of 3D nanocomposite macro‐ and microstructures manufactured using different 3D‐printing technologies for a wide range of domains such as microelectromechanical systems (MEMS), lab‐on‐a‐chip, microfluidics, engineered materials and composites, microelectronics, tissue engineering, and biosystems are reviewed. Parallel advances on materials and techniques are still required in order to employ the full potential of 3D printing of multifunctional nanocomposites.  相似文献   

10.
制备工艺是调控石墨烯/陶瓷复合材料结构、优化其力学和热电等性能的关键.重点综述了石墨烯/陶瓷复合材料的粉末压坯烧结工艺和3D打印工艺及其研究进展.粉末压坯烧结工艺包括无压烧结、热压烧结、放电等离子烧结、微波烧结和高频感应加热烧结等,具有工艺简单、材料性能好、制备参数易控制等优点,是石墨烯/陶瓷复合材料的主要制备工艺,用于制备致密的块体复合材料;主要3D打印工艺有直写成形、激光选区烧结、喷墨打印和立体光固化等,具有结构和形状可控的特点,是目前石墨烯/陶瓷复合材料的研究热点,用于成形复杂形状和特定性能的复合材料器件.另外,还简要介绍了原位生成法、碳热还原法等利用特定物理化学反应制备石墨烯/陶瓷复合材料的制备工艺,并综述了石墨烯在复合材料中的分散工艺.  相似文献   

11.
连续纤维增强热塑性复合材料(Continuous Fiber Reinforced Thermoplastic Composites,CFRTPCs)具有强度高、寿命长、耐腐蚀和绿色可回收等优点,广泛应用于航空航天、交通运输和高精密加工装备等领域.传统复合材料制造工艺较为复杂、生产周期长且成本较高,先进的3D打印技术可...  相似文献   

12.
Mix design and fresh properties for high-performance printing concrete   总被引:1,自引:0,他引:1  
This paper presents the experimental results concerning the mix design and fresh properties of a high-performance fibre-reinforced fine-aggregate concrete for printing concrete. This concrete has been designed to be extruded through a nozzle to build layer-by-layer structural components. The printing process is a novel digitally controlled additive manufacturing method which can build architectural and structural components without formwork, unlike conventional concrete construction methods. The most critical fresh properties are shown to be extrudability and buildability, which have mutual relationships with workability and open time. These properties are significantly influenced by the mix proportions and the presence of superplasticiser, retarder, accelerator and polypropylene fibres. An optimum mix is identified and validated by the full-scale manufacture of a bench component.  相似文献   

13.
A self-consolidating engineered cementitious composite (ECC), which exhibits tensile strain-hardening behavior in the hardened state, while maintaining self-consolidating properties in the fresh state, has been developed by employing hydrophilic poly(vinyl alcohol) (PVA) fibers. The constitutive rheological design approach is adopted to separately control the aggregation between cement particles and sedimentation behavior with a combination of a strong polyelectrolyte and non-ionic polymer. This study suggests an effective formulation approach of fresh cementitious mix to maximize its fluidity without segregation, regardless of solids concentration employed. The resulting self-consolidating PVA-ECC exhibits tensile strain up to 5%. Besides, the methodology of constitutive rheological control can be extended to formulating other self-consolidating cementitious materials with various types of polymeric admixtures.  相似文献   

14.
Owing to the facile,low cost,rapid,personalization characters,3D printing method has been one of the most attractive additive manufacturing processes in medicine,airplane,packaging and printing areas.In this work,a series of carbon nanotubes/polylactic acid(CNTs/PLA) composites were prepared through the combination of molten co-extrusion and 3D printing processes.The orientation and dispersion of CNTs in PLA matrix were investigated to explore the impact of 3D printing process on the morphology of CNTs/PLA composites via transmission electron microscopy,field emission scanning electron microscopy and Raman spectroscopy.X-ray diffractometer,differential scanning calorimetry,and thermal gravity analysis were employed to study the crystal structure and thermal properties of the composites.In addition,the electrical conductivity of the prepared specimen revealed that the orientation of CNTs in PLA might enhance the conductivity of the composite.It was found that 3D printing process was beneficial to increasing the purity of CNTs,electrical conductivity and mechanical properties of CNTs/PLA composites.  相似文献   

15.
In this work, a new three-dimensional (3D) printing system based on liquid deposition modeling (LDM) is developed for the fabrication of conductive 3D nanocomposite-based microstructures with arbitrary shapes. This technology consists in the additive multilayer deposition of polymeric nanocomposite liquid dispersions based on poly(lactic acid) (PLA) and multi-walled carbon nanotubes (MWCNTs) by means of a home-modified low-cost commercial benchtop 3D printer. Electrical and rheological measurements on the nanocomposite at increasing MWCNT and PLA concentrations are used to find the optimal processing conditions and the printability windows for these systems. In addition, examples of conductive 3D microstructures directly formed upon 3D printing of such PLA/MWCNT-based nanocomposite dispersions are presented. The results of our study open the way to the direct deposition of intrinsically conductive polymer-based 3D microstructures by means of a low-cost LDM 3D printing technique.  相似文献   

16.
As structural materials, cementitious materials are quasi-brittle and susceptible to cracking, and have no functional properties. Nanotechnology is introduced into cementitious materials to address these issues. Nano materials, especially nano carbon materials (NCMs) were found to be able to improve/modify the mechanical property, durability and functional properties of cementitious materials due to their excellent intrinsic properties and composite effects. Here, this review focuses on the recent progress of fabrication, properties, and structural applications of high-performance and multifunctional cementitious composites with NCMs including carbon nanofibers, carbon nanotubes and nano graphite platelets. The improvement/modification mechanisms of these NCMs to composites are also discussed.  相似文献   

17.
以京沪高速铁路为工程背景,试验研究了矿物掺合料(粉煤灰、粉煤灰-矿粉)对混凝土工作性能、力学性能和耐久性能的影响以及大掺量矿物掺合料高性能混凝土的配制技术。结合实际工程,介绍了大掺量矿物掺合料高性能混凝土原材料选择、配合比设计、施工工艺等方面的控制技术。  相似文献   

18.
The formulation of advanced molecular materials with bespoke polymeric ionic‐liquid matrices that stabilize and solubilize hybrid organic–inorganic polyoxometalates and allow their processing by additive manufacturing, is effectively demonstrated. The unique photo and redox properties of nanostructured polyoxometalates are translated across the scales (from molecular design to functional materials) to yield macroscopic functional devices with reversible photochromism. These properties open a range of potential applications including reversible information storage based on controlled topological and temporal reduction/oxidation of pre‐formed printed devices. This approach pushes the boundaries of 3D printing to the molecular limits, allowing the freedom of design enabled by 3D printing to be coupled with the molecular tuneability of polymerizable ionic liquids and the photoactivity and orbital engineering possible with hybrid polyoxometalates.  相似文献   

19.
The distribution of fibers in the composite (which takes into account both their locations and orientations) is one of the important factors that affect the mechanical properties of FRCs. However, this parameter depends on various factors during composite fabrication, and controlling the distribution of fibers in the produced material represents a significant challenge. In this study, the applicability of three-dimensional (3D) printing technique for controlling fiber distributions was evaluated. The fibers fabricated using a 3D printer were placed inside a mold to produce cementitious composites. Three-point bending tests were conducted and the results of the experiment were discussed.  相似文献   

20.
316L and Cu-based inks are developed to 3D-printed tetrachiral auxetic structures. The main objectives of the work are to study the effects of powders composition and powder:binder volume ratio on rheological properties and printability of the inks. Following these results, customized Gcode is developed using FullControl Gcode Designer open-source software to 3D print intricate tetrachiral auxetic structures. The results reported in this work show how powder composition (316L versus Cu) has less effect on the inks’ rheological behavior than powder size distribution and powders:binder volume ratio. In terms of rheological parameters, the zero-shear rate viscosity mainly affects the capability of the printed ink to retain its shape after printing, while the yield stress affects the printability. The printed and sintered auxetic structures achieve the intended lattice-geometry design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号