首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This study examines the morphology and mechanical properties of acrylate styrene acrylonitrile (ASA) and polyethylene terephthalate (PET) blends. The morphology of the 60/40 and 40/60 ASA/PET blends reveals a dispersed phase morphology verging on co-continuity, whilst the 50/50 blend appears to be completely co-continuous. Processing temperature has no effect on blend modulus or tensile strength and there is no statistically significant difference in mechanical performance between the three blend ratios. Charpy impact resistance decreases with increasing processing temperature. The fracture surface reveals a similar mushroom fibril morphology found for the ASA/polybutylene terephthalate (PBT) system, but is less extensive. Thermal analysis shows a marked drop in glass transition temperature for the blends compared to the component polymers.  相似文献   

2.
Melt blends of poly (butylene terephthalate) (PBT) and poly (ethylene naphthalate) (PEN) with 30, 40, 50, 60 and 70 wt% PEN were prepared using a single screw extruder and injection moulding machine. 13C and 1H nuclear magnetic resonance (NMR) spectra were obtained with a Bruker DRX-400 instrument, on solutions prepared by dissolving samples of the homopolymers and each blend in deuterated trifluoroacetic acid + chloroform mixtures (1:1 by volume). The absence of new signals in 1H and 13C spectra, that would be expected to result from transesterification reactions in the PBT + PEN blend system, provides convincing evidence that such reactions do not occur in these blends under the melt processing conditions that were used. In the light of published work on solid-state NMR studies of these and related blend systems, and our observations of partial miscibility with a very small domain size, together with substantial enhancement of the mechanical properties of PBT by blending with PEN, we conclude that the improvement in mechanical properties arises from molecular scale mixing of the homopolymers and strong but non-covalent bonding interactions over the very large interfacial area between the PBT-rich and PEN-rich phases.  相似文献   

3.
研究了在多官能团单体——三烯丙基聚异氰酸酯(TAIC)存在下,辐照对PBT/HIPS体系相容性的影响。并用DSC,DMA,SEM和力学性能测试等方法对其形态结构,结晶性能,相容性及力学性能进行了表征。结果表明,辐照使体系中PBT熔程变宽,结晶度下降,结晶速率变慢,结晶尺寸分布变宽,结晶完善性变差;辐射引发多官能团单体反应,使体系的两个Tg松弛发生内移,改善了体系的相容性;当PBT为分散相时,体系的微区尺寸明显变小,甚至难以分清两相结构;辐射改性提高了PBT为分散相的体系力学性能。  相似文献   

4.
通过熔融共混制备了SMA增容的PA6/PBT共混物,研究了增容剂对PA6/PBT共混体系聚集态结构及力学性能的影响。研究表明,SMA能有效地提高PA6/PBT共混体系两相间的相容性,降低分散相尺寸,使分散相分布均匀,同时有效地提高了共混体系的力学性能。通过对试样进行热处理,探讨了不同热处理温度对PA6/PBT共混合金力学性能的影响。结果表明,热处理能提高共混物的拉伸强度,但导致共混物的缺口冲击强度下降。  相似文献   

5.
Melt mixed glass-filled polyamide 6(PA6)/polyetherimide (PEI) blends were prepared in a co-rotating twin screw extruder over the entire composition range of 0–100 wt% of polyamide 6. These blends were characterized by structural, rheological, mechanical and thermal properties. Crystallization behavior and phase morphology of the blends were also investigated. The blend with the composition PA6/PEI 75/25 showed overall improved mechanical properties along with low resultant viscosity which can be processed on standard equipment. Shear viscosity along with shear stress of the blends were analyzed using shear rheometer which concluded that the blends can be processed on standard equipment due to resultant low viscosity. Scanning electron microscope micrographs revealed that the morphology of the blends showed a two phase structure in which the minor phase was dispersed as domains in the continuous phase. Polyolefin elastomer (POE) as impact modifier was added to the above composition in the range of 0–15 phr to study its effect. The thermal characteristics of PA6, PEI, and PA6/PEI blends with and without POE were investigated using DSC and TGA which revealed that the melting temperature and crystallization temperature of the blend remained unchanged while XRD results showed percent crystallinity was increased slightly. Furthermore, it can be said that the blend with composition PA6/PEI 75/25 with 10 phr impact modifier loading was suitable for high end applications because it combines the high mechanical properties of glass-filled PA6 with inherent flame-retardant property of PEI while POE overcomes the physical weakness of moisture absorption.  相似文献   

6.
A series of polybutylene-terephthalate/polycarbonate (PBT/PC) blends with different compositions were prepared using a twin-screw extruder. The morphologies of the blends were revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that a 50/50 PBT/PC blend possessed a bicontinuous structure and the other blends had a dispersed phase of either PBT or PC depending on which was the minor component. A relatively strong interface was observed in the blends with 20%, 40% and 50% PBT; but poor interfacial adhesion was found in the blends with 60% and 80% PBT. The strength of the interfacial boundary was believed to depend on the composition and blending conditions of the individual blend. Fracture experiments showed that the sharp-notch fracture toughness of PC could be significantly increased by mixing with up to 50% PBT without losing its modulus and yield stress. The toughening mechanisms involved in the fracture processes of the blends were studied using both SEM and TEM together with single-edge-double-notched-bend (SEDNB) specimens. It was found that in the toughened blends the growing crazes initiated by the triaxial stress in front of the crack tip were stabilized by the PC domains. The debonding-cavitation mechanism occurred at the PBT/PC interface, which relieved the plane-strain constraint and promoted shear deformation in both PBT and PC. This plastic deformation absorbed a tremendous amount of energy. Crack-interface bridging by the PC domains was clearly verified by the TEM study. Thus, the PC domains not only stabilized the growing crazes they also bridged crack surfaces after the crack has passed by. This effect definitely caused a large plastic-damage zone and hence a high crack resistance. Poor crack resistances of the blends rich in PBT was caused by the poor interfacial adhesion between PBT and PC. In these polymer blends, the growing crazes easily developed into cracks, which subsequently passed through the weak interface of PBT/PC and finally produced fast unstable fracture.  相似文献   

7.
The tensile modulus, tensile strength and impact strength of melt blends of (a) poly(ethylene naphthalate) (PEN) and poly(butylene terephalate) (PBT) with 30, 40, 50, 60 and 70 wt% PEN, (b) Nylon66 and PEN with 30, 50 and 70 wt% Nylon66 were measured, and thermal/thermomechanical properties were analysed by differential scanning calorimetry and dynamic mechanical thermal analysis. Scanning electron microscopy was used for examination of the fracture surfaces of the blends.All PBT/PEN blends show two glass transitions corresponding to the presence of two phases: the glass transition temperature, T g, of the phase with the lower T g increases with increasing PEN content, and T g for the phase with higher T g decreases with increasing PBT content. The implication is that the two polymers are partially miscible, and scanning electron microscopy of fracture surfaces reveals a very small (sub-micron) domain size. Nylon66/PEN blends also show two phases, but the domain size is of the order of m and there is no evidence of partial miscibility.Up to 50 weight proportions PBT does not lower the tensile strength of PBT/PEN blends, and the tensile strength lies between values predicted by the rule of mixtures and a modified rule of mixtures. Incorporation of at least 40% PEN in PBT increases impact strength, but blending with smaller proportions of PEN decreases impact strength. By contrast, blending of Ny66 and PEN results in reduction of tensile strength for all blend compositions.  相似文献   

8.
将聚丙烯(PP)与官能化聚烯烃弹性体(POE-g-M AH)共混,制备出4种新型增韧改性剂,研究了PP的含量和种类对PBT/POE-g-M AH共混体系相形态和力学性能的影响。SEM观察发现,新型增韧改性剂作为分散相具有以POE-g-M AH为软壳、PP为硬核的包藏结构。随着高熔体流动指数PP(EPF 30R)含量的增加,软壳层厚度逐渐减小,包藏结构分散相的相畴尺寸略有减小,分布更加均匀。但添加低熔体流动指数PP(EPS30R)后,包藏结构分散相的相畴尺寸变大,分布不均匀。力学性能测试表明,适量高熔体流动指数PP与POE-g-M AH并用具有显著的协同增韧作用。与PBT/POE-g-M AH体系相比,在相同的增韧剂总用量时,共混物在保持超高韧性的同时,拉伸强度损失最小。  相似文献   

9.
Structure formation and miscibility of sheets from PBT and LCP blends   总被引:1,自引:0,他引:1  
Sheets from blends containing poly(butylene terephthalate) (PBT) and liquid crystalline polymer (LCP) were prepared using a twin-screw extruder. The LCP used is a copolymer composed of 20 mol % ethylene terephalate (PET) and 80 mol % p-hydroxybenzoic acid (PHB). Thermal behavior, viscoelastic properties, and structure of the sheets of various compositions were investigated by using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), microwave orientation analysis (MOA), and wide angle x-ray diffraction (WAXD). X-ray diffractograms of extruded sheets from PBT, LCP, and their blends show a high degree of orientation along extrusion direction. The orientation is mainly due to the high crystallization rate of PBT, although crystallization and orientation of PBT in the PBT and LCP blends could also be induced by adding LCP. In the PBT and LCP blends, the thermal properties of the constituents are slightly changed indicating that PBT and LCP are partially miscible. DSC measurements show that as the amount of LCP added to the blend increased, the melting point T m of PBT in the blends decreased. The single glass transition temperature T g for the PBT and LCP was observed by DMA. Furthermore, no evidence of transesterification in PBT and LCP blends was observed by WAXD.  相似文献   

10.
为了得到刚性与韧性平衡的聚乳酸(PLA)基可生物降解共混材料,通过熔融共混挤出法制备了不同质量比的PLA/己二酸-对苯二甲酸-丁二酯共聚物(PBAT)/聚(3-羟基丁酸-co-羟基戊酸共聚酯(PHBV)可全生物降解共混材料,采用SEM、TG、DSC、毛细管流变仪和万能材料试验机对PLA/PBAT/PHBV共混材料的形态结构、热性能、流变性能和力学性能进行了研究。结果表明:PLA/PBAT/PHBV共混材料的热失重起始分解温度相对纯PHBV提高了45 ℃,热稳定性提高;共混体系中各组分的玻璃化转变温度与单一体系相比几乎无变化,PLA/PBAT/PHBV共混体系为完全不相容体系,同时PBAT和PHBV的加入阻碍了PLA的冷结晶;PLA/PBAT/PHBV 共混体系的共混形态呈“海-岛”分布,PBAT和PHBV均匀地分散于PLA基体中,相界面分明;随着PBAT含量增加,PLA/PBAT/PHBV共混材料熔体的流动性增加,温度变化对黏度的影响变大;PLA/PBAT/PHBV质量比为70/20/10的共混材料可在保留纯PLA 60%拉伸应力的同时,拉伸应变提高到纯PLA的2.6倍,韧性得到改善。所得结论表明PLA/PBAT/PHBV质量比为70/20/10的共混材料的综合力学性能较纯PLA好。   相似文献   

11.
The results of dynamic mechanical analysis reveal that crosslinked polyester resin (PER)/poly(ethylene oxide) (PEO) blends show a composition dependent glass transition temperature, Tg, which suggests that the blends studied are homogeneous in the amorphous state. The initial dynamic storage modulus, E', decreases with increasing PEO content up to 30 wt% in the blends, whereas E for both the 60/40 and 40/60 PER/PEO blends is close to that for the 80/20 PER/PEO blend and much larger than that for the 70/30 PER/PEO blend. The addition of crystalline PEO has a remarkable effect on the mechanical properties of crosslinked PER. Tensile testing shows that the elongation at break first increases greatly and then decreases slightly, whereas the Young's modulus and the tensile strength first decrease and then increase slightly with increasing PEO content in the blends. The variation of tensile properties was considered to be due to both the plasticization effect and the crystallization effect of PEO in the blends. The impact strength remains almost unchanged with increasing PEO content in the blends studied. No dramatic decrease of thermal stability for PER/PEO blends was observed for the blends with PEO content up to 30 wt%.  相似文献   

12.
PBT/PMMA共混体系的研究   总被引:1,自引:1,他引:0  
通过PBT/PMMA、PB/PMMA/PC共混物的拉伸行为、动态力学行为和形态,讨论了PC对PBT/PMMA共混体系的性能及形态的影响。指出PC的存在导致共混物中PMMA的粒径变小,使PMMA对PBT显示出增韧效应,但对PBT-PMMA的相容性无明显影响。  相似文献   

13.
通过熔融法制备了PBT/PA6共混体系。实验结果表明,PBT与PA6的相容性较差,直接共混后其力学性能很差,而加入一种低成本的液体环氧树脂E-54作为PBT/PA6复合体系的相容剂,力学性能明显提高。通过SEM进一步证实,环氧树脂的加入可以降低分散相粒子的大小,改善界面形态,提高共混物的相容性。  相似文献   

14.
Most processing/morphology studies of multi-phase polymer blends have been concerned with controlling the size and shape of the dispersed phase. The dispersed phase is generally a pure homo- or copolymer (apart from low levels of interfacial modifier). This paper describes the preparation during melt processing of a complex polymer blend morphology known as a composite dispersed phase system. Microscopically this structure can be seen to be composed of three parts: two distinct phases with sub-inclusions within one of the phases. This system is a type of blend within a blend. Various microscopic techniques are used to show that a composite multi-phase morphology can be prepared in an incompatible polypropylene/ polycarbonate (PP/PC) blend as well as in a compatible polyethylene copolymer/polyamide blend. This structure has been generated at two compositions for polypropylene/ polycarbonate through melt blending. At 50% volume fraction (near the region of dual-phase continuity), simultaneous addition of components results in co-continuous polypropylene and polycarbonate phases with the latter containing small PP spherical sub-inclusions. At 25% PC (volume fraction) the generation of a composite dispersed phase in a polypropylene matrix is obtained by imposing phase inversion followed by controlling the mixing time. The morphology in this case consists of a polypropylene matrix, a polycarbonate dispersed phase and spherical polypropylene sub-inclusions within the dispersed polycarbonate. Partial stabilization of the composite morphology in incompatible blends with mixing time can be obtained through control of the viscosity of the dispersed phase. Polyethylene copolymer/polyamide blends have also been prepared by the phase inversion process and show that strong interfacial interactions between the polyamide sub-inclusions and polyethylene copolymer dispersed phase material results in complete stabilization of the composite dispersed phase morphology with very high retention of sub-inclusions persisting even after long mixing times.  相似文献   

15.
The morphology and properties of HDPE blends with Zn-SEPDM and GR were studied through SEM and mechanical property test. The results show that as Zn-SEPDM/GR content amounts to 20%, the blend becomes an IPN in structure, and that a rather high impact and tensile strength of HDPE may be obtained after blending. The antistatic effect, the softening point,and HDT of the blend are higher as compared to HDPE/Zn-SEPDM/ZnSt (zinc stearate).The effect of Zn-SEPDM on the compatibility the morphology and properties of IPP blends were studied by DSC, TEM and mechanical properties test. The results show that as Zn-SEPDM content exceeds 20%. Zn-SEPDM in the blend becomes continuous and an abrupt change in impact strength is incurred there from. Owing to the incorporation of ionic groups into EPDM.the strong interactions betWeen the chains make both the impact and the tensile strength of IPP remarkably higher  相似文献   

16.
比较了通过HAAKE Rheocord90转矩流变仪用两种不同的动态硫化混炼方法对热塑性聚氨酯弹性体/乙烯-醋酸乙烯酯共聚物(TPU/EVM)共混体系性能的影响,硫化剂选用过氧化二异丙苯(DCP);探讨了密炼室转子转速和混炼温度对动态硫化共混物性能的影响。通过相差显微镜和傅立叶变换红外光谱仪(FT-IR)对硫化后共混物的微观结构进一步分析表明:动态硫化后的共混体系力学性能优于未硫化体系;两种不同动态硫化法制备的共混物性能相比,B法优于A法,且B法中两相呈明显互锁结构,相畴较小且均匀;FT-IR表明EVM主链的亚甲基和侧链的甲基参与了交联反应,且主要在亚甲基上;转速为30 r/min和混炼温度为150℃时共混物的综合力学性能最优。  相似文献   

17.
采用砂型和金属型两种不同铸造方法对铸态、固溶态和时效态ZL210A合金性能及断口形貌的影响进行研究.结果表明:对ZL210A铸造合金而言,金属型铸造方法优于砂型铸造方法,其常规力学性能σb,σ0.2和δ5均高于砂型铸造,从断口形貌上看,试样断口形貌均呈现典型的穿晶断裂,且韧窝较深.其中,金属型固溶态试样的断口韧窝最为明显,呈现出较好的韧性.  相似文献   

18.
Thermoplastic toughened epoxy resins are widely used as matrices in modern prepreg systems.Different curing conditions play a great role in affecting the cure kinetics and phase behaviour of thermoplastic modified epoxies which further result in different mechanical properties of polymer matrix composites.Since the morphology of the cured thermoplastic/epoxy blends is directly related to the mechanical properties,it is essential to control processing conditions for obtaining desirable morphology.A polyethersulphone (PES) modified multifunctional epoxies,triglycidylaminophenol (TGAP) and tetraglycidyldiaminodiphenylmethane (TGDDM),was used for investigation.The cure kinetics and cured morphology of polymer blends heated at different heating rates and cured at different temperature were studied.It is shown that higher cure temperature and higher heating rate display similar effects in the epoxy conversion and the domain size of phase separated structure.  相似文献   

19.
Blending of poly (2,6-dimethylphenylene ether) (PPE), polystyrene (PS) and a thermotropic liquid crystalline polymer (LCP) was performed using a continuous co-rotating twin-screw extruder. The influence of LCP content on the blending process was studied by changing the barrel heater temperature and the screw speed. The torque of the screw shafts generated during the blending process was influenced by LCP content; its influence was not simple. The generated torque was found to depend not only on the melt viscosity of LCP but also on its distortion temperature. Further, the effects of matrix viscosity on the morphology and mechanical properties of the PPE/PS/LCP blends were studied. Well-developed fine LCP fibrils were formed during the melt-drawing process when the matrix viscosity was high. The formation of well-developed fine fibrils was found to improve the mechanical properties of the PPE/PS/LCP blend. Two mechanisms are proposed for the formation of well-developed fine LCP fibrils.  相似文献   

20.
In this work, the effect of the processing method on the mechanical properties and morphology of compatibilized PA6/LDPE blends was investigated. The blends were prepared by two processing methods: Injection and Extrusion followed by Injection. The compatibilizers used were polyethylene grafted with acrylic acid (PEgAA) and polyethylene grafted with maleic anhydride (PEgMA). The results showed that in both processing methods the impact strength and elongation at break of the compatibilized blends were greater than those of the uncompatibilized ones. For the blends prepared by injection, the impact strength of PA6/PEgMA/LDPE blend was greater than that of PA6/PEgAA/LDPE blend. For the blends prepared by extrusion followed by injection, the impact strength of the PA6/PEgAA/LDPE blend was greater than that of PA6/PEgMA/LDPE blend. SEM analysis showed that the morphology of the PA6/PEgAA/LDPE blend prepared by extrusion followed by injection was more stable than that of the same blend prepared only by injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号