首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
建立了车辆乘坐室声振耦合分析的对称有限元模型。在此基础上,提出了一种可用于综合内饰等乘坐室附属结构对乘坐室声振特性影响的动态子结构方法。该方法将内饰或附属结构等效为乘坐室壁结构与内部声空间中的一对相应的子结构/子空间,并将其影响引入到到声振耦合分析的对称有限元模型中,从而使有限元分析的精度大为提高。最后,以一国产轿车为对象给出了算例,验证了所提方法的正确性。  相似文献   

2.
介绍了有限元法和模态分析技术在某轻型汽车车身结构振动和乘座室空腔内部噪声测试分析上的应用,同时应用声-固耦合理论对车身结构与车内噪声耦合进行了研究,得出了相应的结论,为降低由结构振动所引起的车内低频噪声提供了结构修改和声学修改的依据。  相似文献   

3.
轿车车身结构噪声性能分析与优化研究   总被引:2,自引:0,他引:2  
随着汽车工业的发展和人们对汽车舒适性的要求越来越高,在轿车车身设计中,运用有限元法来进行结构优化以严格控制噪声性能是一种非常有效的方法。以某型SUV车为例,建立车身及乘坐室声腔的有限元模型,并与刚度实验对比验证模型的正确性,通过频率响应分析得到车内噪声等级以及噪声的频率分布特性。以车内噪声最小化为优化目标函数,车身质量为约束条件,通过车身壁板贡献度分析确定优化设计变量,进行车身关键零件的优化改进,使白车身内两个峰值噪声分别降低了5.1dB和3.6dB,为今后开展轿车车身噪声研究提供可借鉴的方法。  相似文献   

4.
车内低频噪声与悬架特性参数的定量关系   总被引:2,自引:0,他引:2  
基于车身乘坐室声振耦合的动态子结构修改方法,将汽车悬架系统视为附加于车身上的子结构(子系统),并结合悬架系统对路面不平度位移激励的振动传递效应,揭示出车内低频噪声的声压值与悬架系统刚度、阻尼、非悬挂质量以及轮胎径向刚度、径向阻尼问的直接定量关系。然后,通过算例及相应的实验验证了其正确性.  相似文献   

5.
车内噪声预测与面板声学贡献度分析   总被引:14,自引:4,他引:14  
面板声学贡献度分析是汽车NVH特性研究的重要内容,识别各面板对车内场点的贡献度对于控制车内噪声有着重要意义。利用有限元结合边界元的方法,建立三维车辆乘坐室声固耦合模型,使用ANSYS软件计算出乘坐室在20-200Hz频率的声固耦合振动特性后,采用LMS Virtual.lab软件预测了驾驶员左、右耳的声压响应。并通过各壁板对驾驶员右耳声压的面板贡献度分析,得出了各壁板对驾驶员右耳总声压的贡献度,为降低车内某点噪声进行结构修改提供理论依据。通过对结构修改,有效降低了车内某点噪声。  相似文献   

6.
在车身顶棚内蒙皮表面进行阻尼处理,建立阻尼处理后的车身有限元模型。进行模态分析,振动响应分析,并将车身与车内声腔模型进行声固耦合计算。计算结果和阻尼处理前的声压级比较,证明车身表面阻尼处理能够有效降低乘坐室内噪声。  相似文献   

7.
大型客车车身振动和声学特性分析   总被引:1,自引:1,他引:0       下载免费PDF全文
为了解决客车车身振动导致乘员室产生低频噪声的问题,在对车身骨架结构、车室腔体进行模态特性分析和对车身结构进行频响分析的基础上,运用边界元法对车室进行声场分析和车身板块贡献度分析,进而找出车内噪声声压峰值处所对应的振动频率及该峰值下的“噪声源”板块,提出对车身结构的修改建议。  相似文献   

8.
为了解决客车车身振动导致乘员室产生低频噪声的问题,在对车身骨架结构、车室腔体进行模态特性分析和对车身结构进行频响分析的基础上,运用边界元法对车室进行声场分析和车身板块贡献度分析,进而找出车内噪声声压峰值处所对应的振动频率及该峰值下的“噪声源”板块,提出对车身结构的修改建议.  相似文献   

9.
基于模态灵敏度分析的客车车身优化   总被引:1,自引:1,他引:0  
针对提高国产某轻型客车的乘坐舒适性,解决车内振动和噪声剧烈问题,本文首先基于有限元仿真和道路试验的阶次跟踪方法进行振动和噪声原因分析,所确定的原因为轮胎激励引起的车身结构共振。为避免共振,以白车身钣金件和骨架的厚度为设计变量,以提高白车身前两阶固有频率为目的,用模态灵敏度理论对白车身进行优化设计和灵敏度分析。然后结合各钣金件和骨架的模态灵敏度和质量灵敏度,设计最优的改进方案并进行试验分析。对比优化前后的试验结果,验证了该优化方案的有效性与合理性。  相似文献   

10.
基于白车身模态实验的某SRV NVH研究   总被引:1,自引:0,他引:1  
试验模态分析技术是获得结构动态特性的一种重要方法。将试验模态技术应用到某SRV白车身的结构动态分析中,并通过对白车身模态和车内噪声优势频率的关联分析,确定该白车身模态分布对车内噪声峰值的影响,从而通过改变白车身的某些局部结构,降低车内噪声峰值,提高整车NVH水平。  相似文献   

11.
车辆乘坐室声学泄漏分析的声振耦合有限元模型   总被引:1,自引:1,他引:0  
提出了一种新的“声学泄漏边界条件” ,并将其引入到声振耦合分析的有限元模型中 ,使模型具备了对实际车辆乘坐室声学泄漏问题的处理能力。然后以SH76 0A型轿车乘坐室为对象给出了算例 ,并通过计算和测量结果的对比分析 ,验证了所提方法的正确性。  相似文献   

12.
某新开发自然吸气发动机车辆在加速过程中当发动机转速为2 000 r/min左右时车内存在轰鸣声,严重影响车内乘坐舒适性。运用道路试验分析、CAE分析等手段对噪声产生的原因进行研究,最终确定原因是进气系统压力波动导致空气滤清器振动,经由车身连接点至车内传递路径放大导致轰鸣噪声。通过优化进气系统压力波动,增加赫姆霍兹谐振腔,降低激励源,并在车身与空滤连接点增加橡胶垫片以衰减振动传递,使车内前后排噪声幅值各降低7d B左右。  相似文献   

13.
基于PolyMAX的声固耦合模态试验研究   总被引:2,自引:1,他引:1  
白车身的结构模态频率和模态振型反映了汽车车身结构的固有特性,对车内噪声有重要影响。车内空腔跟车身结构一样,同样拥有模态频率和模态振型。采用LMS数据采集系统对某国产SUV进行车内空腔声学模态试验。首先基于传声器阵列的方法获取响应点的信号,然后利用PolyMAX方法提取声学模态频率及振型。将声学模态频率与白车身结构模态频率进行对比分析,结果表明:车内空腔的第一、二阶声学模态分别跟白车身的第四、十阶结构模态有很强的耦合。最后通过实车测试验证了声固耦合共振时低频轰鸣的存在。可以在关键部件增加板厚、顶盖和地板附加阻尼层、顶盖加加强筋等方式改变车身结构的局部模态来破坏车身结构模态和声腔模态的强耦合状态,降低车内的低频轰鸣声  相似文献   

14.
针对某特种车车内噪声水平较高问题,建立车身结构与声固耦合有限元分析模型,并进行车身振动频响分析和车内声压响应分析;通过仿真结果与实车道路试验结果对比,验证车身结构和声固耦合有限元模型的有效性;利用耦合声学边界元法进行驾驶室内部声学特性研究,识别出不同工况的主要噪声频率;并对影响车内噪声的车身板件进行声学贡献分析,找到对车内声压贡献最大的板件;最后对声学贡献大的板件粘贴阻尼材料来对车内进行降噪,车内噪声得到较为明显改善。  相似文献   

15.
为解决小型电动汽车车内路面激励噪声在30 Hz与36 Hz附近声压级过大的问题,以某小型电动汽车为研究对象,以实验获取的数据为基础,利用传递路径分析(TPA)模型验证实验结果的准确性,用底盘车身接附点的载荷激励已建立的车身内饰与声腔模型,进行强迫响应分析,将仿真结果与实验结果对比,验证模型的有效性。通过计算该模型在载荷激励下的工作变形,分析引起车内噪声的车身结构弱点,主要通过增加限位零件或固定零件来进行车身结构的优化。实验工况下的结果表明:优化后车内噪声在30 Hz与36 Hz附近噪声分别降低了9.7 dB与5.3 dB,效果十分理想,成功解决路面激励导致的NVH问题。  相似文献   

16.
以某车型白车身为研究对象,首先建立白车身结构有限元模型并验证其有效性;随后通过对模型进行等效辐射声功率分析,得到白车身关键板件对车内的辐射噪声水平,并识别贡献量较大的结构位置;再根据分析结果构建白车身形貌优化模型并进行计算求解;最后将优化前后白车身等效辐射声功率进行对比,优化后辐射噪声在分析频段内整体降低,且最大响应峰值降低3.8 d B。研究结果表明,在汽车白车身设计阶段,基于等效辐射声功率分析和形貌优化设计可以有效地抑制结构的辐射噪声。该方法和思路可为工程领域相关的结构噪声分析和控制提供参考。  相似文献   

17.
车内低频结构噪声是汽车NVH 特性研究的重要内容,判断低频噪声的主要来源和降低车内低频噪声水平对于控制车内噪声有着重要意义。运用声传递向量(ATV)技术,对车内低频噪声进行预测仿真,得到场点频响函数并针对该场点进行面板贡献度分析;运用模态声传递向量(MATV)技术,进行车身结构模态贡献量分析,提取贡献较大的模态结果,进而预测对场点声压影响较大的车身结构。经过车身结构改进后,车内低频噪声得到一定程度抑制。为改进车内噪声水平提供一定的参考依据。  相似文献   

18.
车身板面贡献量分析作为研究车身振动对车内噪声影响的重要内容,常用声学传递向量(acoustic transfer vector,ATV)仿真计算来实现。为了进一步探究车身振动对车内语音清晰度的影响,通过对语音清晰度客观参量与主观评价分值的比较,确定以非稳态加速工况下的语言可懂度指数(speech intelligibility index,SII)为指标,运用ATV仿真手段找出对语音清晰度影响最大的面板。分析结果显示车身顶棚面板对语音清晰度影响最大。针对分析结果,采用遗传算法搜寻和ATV逆运算仿真相结合的方法,有针对性地进行了车身顶棚阻尼敷设并加以验证。结果表明,基于语音清晰度车身板面贡献情况的优化设计,有效地改善了非稳态全油门加速工况下的车内语音清晰程度,提高了车内声音品质。  相似文献   

19.
系统性地建立了阻隔结构降噪试验研究方法。建立面向白车身的阻隔结构降噪性能测量方法,通过对比阻隔结构拆除前后白车身模态与传递函数的变化情况,分析其对于车身低频噪声的抑制能力;建立面向整车的阻隔结构降噪性能转鼓试验方法,用以评估其对于发动机噪声、轮胎路面噪声的抑制能力;建立面向整车的阻隔结构降噪性能风洞试验方法,用以评估其对于气动噪声的抑制能力。试验结果表明,阻隔结构降低车内噪声主要有两个方面:一方面,空腔阻隔结构增强了车身的模态阻尼,抑制车身的振动,从而降低了车内低频噪声;另一方面,阻隔结构切断了车外噪声经过车身侧围空腔入侵乘员舱的传播途径,从而降低了车内高频噪声。  相似文献   

20.
某三厢轿车在粗糙的老旧沥青路面上行驶时,车内后座存在严重的低频轰鸣声。通过车内空腔声学模态和装饰车身结构模态仿真计算,发现车内后座低频噪声产生的原因为车内空腔的第二阶声学模态与装饰车身车顶后部第六阶局部结构模态强烈耦合。为避免耦合共振,改进了后车顶横梁结构设计。实车验证改进措施有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号