首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
陈燕  扈立  魏刚  侯强 《钢管》2019,48(6)
利用Gleeble 3500热模拟试验机研究了工业纯钛TA1管材在660~780℃,应变速率为0.1~10 s~(-1)条件下的热压缩变形行为。利用线性拟合方法确定了材料常数及变形激活能,建立了双曲正弦函数形式本构方程。用Zenner-Hollomon参数对最大应力进行了预测,预测值与试验值能够较好地吻合。试验结果表明:工业纯钛TA1材料的应力-应变曲线表现出显著的加工硬化特征,流变应力随温度的升高而降低,随应变速率的下降而减小。工业纯钛TA1热压缩变形过程中,流变应力受变形温度及变形速率的显著影响;流变应力随温度的升高而降低,随变形速率的下降而减小。  相似文献   

2.
在Gleeble-3500热模拟试验机上对TA2纯钛进行变形温度为800℃~950℃、应变速率为0.001~1s^(-1),压下量为50%条件下的热压缩变形试验。采用一种考虑应变的改进摩擦修正模型对原始试验数据进行摩擦修正,在对TA2纯钛高温流变曲线进行分析的基础上,研究其高温变形行为,构建TA2纯钛热变形本构方程。结果表明,在低应变条件下TA2纯钛流变应力迅速增加,达到峰值应力后流变曲线趋于稳态变化;流变应力随变形温度的降低和应变速率的增大而增加;可采用包含Z参数在内的双曲正弦形式的本构方程来描述TA2纯钛高温热变形行为,材料热变形激活能为480.944kJ/mol;流变应力的模型预测值与试验值之间相关性较高,相关系数R为0.964,表明本文基于改进摩擦修正模型所建立的本构方程具有较高的精度。  相似文献   

3.
在Gleeble-1500热模拟机上对120°模具室温Bc方式ECAP变形8道次制备的平均晶粒尺寸约为200 nm的工业纯钛进行等温变速压缩实验,研究超细晶工业纯钛在变形温度为298~673 K和应变速率为1×10-4~1×100s-1条件下的流变应力行为。结果表明:变形温度和应变速率均对流变应力具有显著影响,峰值应力随变形温度的升高和应变速率的降低而降低;流变应力在变形初期随应变的增加而增大,出现峰值后逐渐趋于平稳,呈现稳态流变特征。采用双曲正弦模型确定了超细晶工业纯钛的变形激活能Q=104.46 kJ/mol和应力指数n=23,建立了相应的变形本构关系。  相似文献   

4.
在Gleeble-1500热模拟机上对室温120°模具等径弯曲通道变形(ECAP)制备的平均晶粒尺寸为200nm的工业纯钛(CP-Ti)进行等温变速压缩实验,研究超细晶(UFG)工业纯钛在变形温度为298~673K和应变速率为10-3~100s-1条件下的流变行为。利用透射电子显微镜分析超细晶工业纯钛在不同变形条件下的组织演化规律。结果表明:流变应力在变形初期随应变的增加而增大,出现峰值后逐渐趋于平稳;峰值应力随温度的升高而减小,随应变速率的增大而增大;随变形温度的升高和应变速率的降低,应变速率敏感性指数m增加,晶粒粗化,亚晶尺寸增大,再结晶晶粒数量逐渐增加;超细晶工业纯钛热压缩变形的主要软化机制随变形温度的升高和应变速率的降低由动态回复逐步转变为动态再结晶。  相似文献   

5.
用Gleeble-3500热模拟试验机对退火态纯钛试样,在变形温度298~723 K、应变速率10~(-4)~10~1s~(-1)下进行热压缩试验,研究变形温度和应变速率对其热变形行为及组织演变的影响。结果表明:纯钛的压缩行为与变形温度和应变速率存在相关性;当应变速率一定时,流变应力随变形温度的升高而减小;当变形温度一定时,流变应力随应变速率的增大而增大。显微组织观察结果显示:在低温或高应变速率下变形时,形变组织主要为大尺寸等轴晶和孪晶,随着温度的升高或应变速率的降低,再结晶晶粒逐渐增多,孪晶数量减少,直至消失。  相似文献   

6.
利用Gleeble-1500D热模拟试验机对锻态工业纯钛TA1进行高温拉伸试验,其变形温度为800~1050℃,变形速率为0.01~1 s-1,并对工业纯钛TA1进行变形抗力研究,分析了变形温度、应变速率和变形程度对变形抗力的影响。结果表明,变形抗力曲线主要以动态回复、再结晶软化为主要特征。温度对变形抗力的影响是以工业纯钛TA1相变点为界限。800和1000℃时,随应变速率增大,变形抗力先增大后减小;变形温度为850、900和1050℃时,变形抗力随应变速率增大而增大。变形抗力随变形程度增加,其变化呈两种趋势。  相似文献   

7.
采用Gleeble?1500热模拟机,在变形温度为1 100~1 350℃、变形速率为0.01~5 s?1、变形量为60%的实验条件下,对纯钼板坯的高温塑性变形行为进行研究。结果表明:流变应力随变形温度的升高而减小,随应变速率的增大而增大;不同变形温度下流变应力之间的差值随着应变速率的增加逐渐减小;同一应变速率下,峰值应力随变形温度的升高向应变小的方向推移。采用包含Zene-Hollomon参数的双曲正弦模型,建立了纯钼板高温塑性流变应力与变形温度和应变速率之间的本构方程。依据本构方程计算出的纯钼板坯流变应力理论值与实际值的平均相对误差仅为3.68%,表明该本构方程可为纯钼热成形加工工艺的制定提供理论依据。  相似文献   

8.
赵新 《热加工工艺》2013,42(2):12-14
采用热压缩试验研究了钛合金TC18在700~850℃和应变速率0.001~1 s-1的热变形行为.通过回归分析建立了流变应力与热变形参数相互关系的数学模型.结果表明:在应变速率一定的条件下,流变应力随温度的升高而降低;在变形温度一定的条件下,流变应力随应变速率的升高而升高.  相似文献   

9.
用热模拟试验机研究了纯铂在真应变量为0.9、变形温度为550℃~950℃和应变速率为0.01~1 s~(-1)的热塑性变形行为,并对热压缩后的样品进行了金相观察和显微硬度测量。结果表明,纯铂的流变应力随变形温度的升高和应变速率的降低而降低;其热压缩变形过程中软化行为由变形温度和变形速率共同作用决定,一般以动态回复为主,而在低应变速率和高形变温度下以动态再结晶为主,动态再结晶发生造成的软化使纯铂样品的硬度迅速下降。利用Zener-Hollomon参数方程获得了热塑性变形流变应力本构方程,得到纯铂的热变形激活能为208.51 kJ/mol,流变应力拟合公式计算值与实验值的平均误差为5.9%。  相似文献   

10.
在Gleeble-1500D热模拟实验机上,在应变速率为0.01~5 /s、变形温度为600~800 ℃条件下,采用高温等温压缩实验对Cu-2.0Ni-0.5Si-0.03P合金的流变应力行为进行研究。结果表明:热模拟实验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大;在应变温度为750和800 ℃时,合金热压缩变形流变应力出现明显的峰值应力,表现为连续动态再结晶特征。从流变应力、应变速率和温度的相关性,得出该合金热压缩变形时的热变形激活能和本构方程。  相似文献   

11.
《铸造》2017,(2)
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-Cr-Zr合金在变形温度为600~800℃、应变速率为0.01~5 s~(-1)和总压缩应变量约50%条件下的热变形行为进行了研究。利用光学显微镜观察Cu-Cr-Zr合金在不同变形温度、不同应变速率下的显微组织,分析其组织演变规律。结果表明:应变速率和变形温度的变化强烈地影响合金流变应力的大小;Cu-Cr-Zr合金在热变形过程中发生了动态再结晶,且流变应力随变形温度升高而降低,随应变速率提高而增大;在应变温度为800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征。从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程。  相似文献   

12.
在变形温度为420~540℃、应变速率为0.001~1 s-1的条件下,在Gleeble-1500热模拟试验机上采用圆柱体等温热压试验对6016铝合金的热变形流变应力行为进行研究,讨论实验条件对应变硬化指数n和应变速率敏感性指数m的影响.结果表明:6016铝合金流变应力受应变速率和变形温度的影响明显,流变应力随变形温度的升高而降低,随应变速率提高而增大;当温度大于420℃时,应变硬化指数n受温度和应变速率的影响较小;当温度为500℃、应变速率为0.001 s-1时,其应变速率敏感性指数m达到0.3036;可用Zener-Hollomon参数的双曲正弦形式来描述6016铝合金热压缩变形时的流变应力行为;热变形流变应力的拟合曲线与实验曲线能很好吻合.  相似文献   

13.
在Gleeble-1500热模拟实验机上对原位生成TiC颗粒增强钛基复合材料进行热压缩实验,研究变形温度为700~950 ℃、温度间隔为50 ℃,应变速率为10-3~1 s-1条件下的热变形行为,采用XRD、DSC、SEM、OM等实验手段对复合材料的相变点及变形后的显微组织等进行分析和测定.结果表明:流变应力随变形温度的升高和应变速率的降低而减小;在高应变速率条件下,绝热温升对流变应力的影响较为明显;动态再结晶是TiC钛基复合材料热变形的重要机制,变形温度越高,再结晶越易进行,变形速率越高,应变量越大,再结晶晶粒越细小.  相似文献   

14.
利用应力应变曲线、热加工图,结合电子透射电子显微镜和背散射衍射技术研究在变形温度为350~510°C、应变速率为0.001~10 s-1时高钛6061铝合金的热变形行为。结果表明,该合金的热压缩变形流变峰值应力随变形温度的升高和应变速率的降低而降低;在实验参数范围内平均热变形激活能为185 k J/mol;建立了流变应力模型;该合金热变形时主要的软化机制为动态回复;根据材料动态模型获得了高钛6061铝合金的热加工图,最佳的热加工窗口温度为400~440°C,应变速率为0.001~0.1 s~(-1)。  相似文献   

15.
热压缩7075铝合金流变应力特征   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟高温压缩变形试验,研究了7075铝合金高温塑性变形时的流变应力行为.结果表明,应变速率和变形温度的变化影响合金稳态流变应力的大小,在变形温度为350~500℃、应变速率为0.01~1 s^-1的条件下,随变形温度升高,流变应力降低;而随应变速率提高,流变应力增大;应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius关系,可用Zener-Hollomon参数描述7075铝合金高温塑性变形时的流变应力行为.  相似文献   

16.
在变形温度为1 050~1 140℃、应变速率为0.01~10 s 1和变形率为50%的条件下,采用Gleeble 1500热模拟机研究喷射成形FGH95合金的热压缩变形行为。结果表明:在合金热压缩变形初始阶段,流变应力随应变的增加迅速增大,达到峰值应力后逐渐减小,呈现明显的动态软化特征;合金流变应力随变形温度的升高和应变速率的降低而显著减小;应变速率为0.1~10 s 1时,合金峰值应变随温度升高而减小,并趋于平稳;而应变速率为0.01 s 1时,合金峰值应变在1 100℃出现极大值。考虑变形量对合金热压缩流变行为的影响,引入包含应变量的四次多项式函数对双曲正弦修正的Arrhenius方程进行改进,改进后的本构方程的流变应力预测值与实验值吻合较好,平均相对误差为3.64%。  相似文献   

17.
采用Gleeble-1500热模拟高温压缩变形试验,研究了7075铝合金高温塑性变形时的流变应力行为。结果表明,应变速率和变形温度的变化影响合金稳态流变应力的大小,在变形温度为350~500℃、应变速率为0.01~1s-1的条件下,随变形温度升高,流变应力降低;而随应变速率提高,流变应力增大;应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius关系,可用Zener-Hollomon参数描述7075铝合金高温塑性变形时的流变应力行为。  相似文献   

18.
为了研究某厂热连轧纯钛卷精轧段的变形抗力问题,根据工业生产的实际轧制工艺,确定该精轧段的轧件形变行为条件为:变形温度范围为700~800℃,应变速率为5~25 s~(-1),最大变形量为0.8,对纯钛进行热压缩试验。结果表明:纯钛的流变应力随变形温度升高而降低,随应变速率升高而升高,变形机制受到温度和应变速率的影响较大,温度为700℃、应变速率为1 s~(-1)时主要以动态回复为主,随着温度和应变速率的增加,动态再结晶程度不断增加,当温度为800℃、应变速率为20 s~(-1)时,再结晶比较充分,组织均匀性良好。根据热模拟实验得到的真应力-应变数据,同时考虑化学成分的影响,基于Johnson-Cook模型建立了能够综合反映诸多因素的变形抗力模型,由变形抗力模型得到的轧制力计算值与实际值的比较验证了模型可靠性,为热连轧纯钛卷精轧生产的工艺控制提供了有效依据。  相似文献   

19.
在Gleeble-3800热模拟机上采用等温压缩实验研究了5182铝合金在变形温度为573 K~723 K、应变速率为0. 01 s-1~10 s~(-1)、真应变为0~0. 69条件下的高温流变应力行为,建立了5182铝合金热变形的本构方程和热加工图。结果表明:5182铝合金在热变形时,其流变应力呈现出稳态流变特征,随变形温度的升高而降低,随应变速率的增加而增大,但在应变速率ε·≥1 s~(-1)高应变速率下,则出现动态软化现象;可以采用包含Z参数的双曲正弦函数关系来描述5182铝合金高温变形时的流变应力行为;最佳的热变形区域为变形温度400℃~420℃、应变速率0. 01 s~(-1)~0. 1 s~(-1)。  相似文献   

20.
在变形温度420~540℃、应变速率0.001~1 s-1时,利用Gleeble-1500热模拟试验机采用圆柱体等温热压缩试验对6016铝合金热变形流变应力行为进行研究,讨论实验条件对应变硬化指数n和应变速率敏感性指数m的影响.结果表明:6016铝合金流变应力受应变速率和变形温度的影响明显,流变应力随变形温度升高而降低,随应变速率提高而增大;当温度大于420℃时,应变硬化指数n受温度和应变速率影响较小;温度为500℃、应变速率为0.001s-1时,其应变速率敏感性指数m达到0.3036;可用Zener-Hollomon参数的双曲正弦形式来描述6016铝合金热压缩变形时的流变应力行为;拟合曲线与实验曲线能很好吻合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号