首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用基于分子动力学的仿真方法建立了金属钛纳米切削分子动力学模型,选择了有代表性的切削条件,通过仿真得到瞬间原子位置图像并对切削过程中材料去除现象、加工表面形成过程、系统势能和工件温度等的变化进行了分析。发现在金属钛的纳米切削过程中切屑和加工表面是由于晶格能的释放和位错的不断延伸扩展形成的。已加工表面原子的弹性恢复和晶格重构能够减缓总势能和温度不断增加的趋势,并使其伴随有微小波动。  相似文献   

2.
基于分子动力学的基本原理,构建了钛的纳米切削分子动力学仿真模型。工件原子间采用嵌入原子势EAM(Embedded atom method),工件原子与刀具原子间采用Morse势函数,研究了在不同刃口半径和刀具前角条件下,钛纳米切削过程中工件形态、系统势能、切削力以及工件温度等的变化规律。结果表明:随着刀具刃口半径增大,加工表面粗糙度增加,切削力和工件温度降低,切屑变薄;当刀具前角由负值增加到正值,钛工件承受的压应力逐渐变为剪应力,正前角刀具更有利于切削,同时在不同的刀具前角下,切向力和法向力的大小也有显著变化。  相似文献   

3.
基于分子动力学的基本原理,构建了钛的纳米切削分子动力学仿真模型。工件原子间采用嵌入原子势EAM(Embedded atom method),工件原子与刀具原子间采用Morse势函数,研究了在不同刃口半径和刀具前角条件下,钛纳米切削过程中工件形态、系统势能、切削力以及工件温度等的变化规律。结果表明:随着刀具刃口半径增大,加工表面粗糙度增加,切削力和工件温度降低,切屑变薄;当刀具前角由负值增加到正值,钛工件承受的压应力逐渐变为剪应力,正前角刀具更有利于切削,同时在不同的刀具前角下,切向力和法向力的大小也有显著变化。  相似文献   

4.
采用分子动力学模拟方法进行了金属钛的纳米振动切削和普通纳米切削的比较研究.结果表明:在相同仿真条件下,单向振动X、Y向切削力平均值仅为普通切削的1/3左右;椭圆振动切削(elliptical vibration cutting,EVC)相比单向振动切削,剪切角变大,切屑的塑性变形降低,同时主切削力以及背吃刀力值均降低;单向振动切削和EVC的切削温度呈近似正弦脉冲变化, 对比普通加工,振动切削的温度显著下降;相比于单向振动切削EVC的工件平均切削温度略高.  相似文献   

5.
为改善Ni3Al基合金的纳米切削表面质量以获得更好的服役状态,结合纳米级分子动力学模拟和微观切削实验,探讨了加载温度(300~1050 K)与切削力、表面形貌的关联性。分子动力学模拟结果显示,在纳米切削Ni3Al基合金过程中,加载温度为750 K时的切削力波动相对于其他温度最小;当加载温度在600~750 K时,影响表面形貌的凸起原子数量最少,即表明加载温度为750 K左右时,Ni3Al基合金可以获得较高的表面质量。Ni3Al基合金微观切削实验表明,当加载温度在600~750 K时,加工表面轮廓可以获得较高的平整度,间接验证了在Ni3Al基合金纳米切削的分子动力学仿真结果的可行性。研究结果表明,选取合适的加载温度是改善Ni3Al基合金纳米切削加工表面质量的有效途径。  相似文献   

6.
当材料切削厚度达到几个原子层时,微纳米切削实验变得困难且耗时,目前的实验条件根本无法实现.而分子动力学仿真却能克服这些困难,能十分方便地改变切削条件、刀具的几何形状和加工工件材料的性质.对基于分子动力学仿真的微纳米虚拟切削基本原理及其国内外研究的现状进行阐述.介绍了几种分子动力学可视化软件.虽然目前存在很多优秀的分子动力学可视化软件,可是没有一个是针对微纳米切削的,也不能观察温度场、应力分布等信息.分析了微纳米切削可视化研究存在的问题和发展趋势,指出微纳米加工可视化将成为探索微纳米加工机理最有效的手段.  相似文献   

7.
为深入理解单晶锗纳米切削特性,提高纳米锗器件光学表面质量,首次采用三维分子动力学(MD)的方法研究了单晶锗纳米切削过程中工件原子的温度分布情况,研究了晶体的各向异性(100), (110), (111)晶面对切削温度的影响及切削温度对切削力的影响。结果表明,在切削过程中最高切削温度分布在切屑当中,达到了460K。刀具的后刀面与已加工表面之间的区域也有较高的温度,在400K以上。在三个不同的晶面中,(111)晶面的切削温度最高,其根本原因是由于不同晶面间的原子空间结构不同,(111)晶面的原子密度最大即为单晶锗的密排面,释放出的能量最多。切削温度对切削力也有影响,切削温度越高,工件中原子受到的切削力越小。  相似文献   

8.
基于大规模并行算法建立了单晶Cu纳米加工新型三维分子动力学仿真模型,采用Tersoff势、嵌入原子势(embeddedatom method,EAM)和Morse势分别描述刀具原子之间、工件原子之间和工件与刀具原子之间的相互作用.研究了纳米加工过程中系统的温度分布及其热效应的影响,从位错和温度的角度对切屑形成过程和纳米加工表面的形成机理进行了分析.模拟结果表明:位错的扩展方向和切屑的堆积方向均沿着与切削方向成45°方向(〈110〉晶向)运动;系统的温度分布呈同心形,切屑处温度最高,同时在金刚石刀具中存在较大的温度梯度;随着系统温度升高,工件材料具有热软化效应;切削速度和切削刃钝圆半径对系统的温度分布影响很大.  相似文献   

9.
采用分子动力学方法研究单晶γ-TiAl合金纳米切削过程,通过对单晶γ-TiAl合金的建模、计算和分析,讨论了不同切削深度和切削速度对切削过程的影响,结果发现:在切削过程中,随着切削深度的增大,切屑体积逐渐增大,切屑中原子排列越来越紧密,位错密度也会随之增大;但随着切削速度的增大,位错密度反而会随之降低。在一定的切削深度和切削速度范围内,切削过程中刀具前方都会产生"V"型位错环,工件的温度和势能也都会相应的增大。特别是,当切削速度为400 m/s时,刀具前方的切削表面上未出现原子错排。  相似文献   

10.
采用分子动力学的方法建立了金属钛的纳米振动切削模型,通过切削仿真研究了振动切削参数变化对整个振动切削过程的影响。研究发现:振动频率和振幅的增大会使接触率、切削力及切削温度的数值减小。切削速度增大会使接触率、切削力及切削温度升高,相比对切削力的改变,在切削速度小于100m/s的情况下对切削温度的影响效果更显著。刀具刃口半径的增大会使切削过程中已加工面的变质层厚度增加,表面粗糙度增大,切削力与切削温度的数值随刃口半径的增大而增加,当刃口半径跟切削厚度之比大于1时,背吃刀力及切削温度提升的速率更快。  相似文献   

11.
纳米切削会造成工件的内部微观缺陷,这种缺陷会引起残余应力的变化进而影响工件的表面质量,而这种缺陷结构与切削层初始温度有密切联系。为降低工件纳米切削加工制造中的缺陷,采用分子动力学的方法,构建了含有切削层的单晶铜纳米切削模型。首先,通过分析工件结构体积及微观缺陷的变化确定了切削层的适用初始温度;其次,分析了切削层初始温度对切削力的影响,并在不同初始温度和切削力作用下对单晶铜位错和晶格等微观结构的变化进行了分析;最后,通过实验对仿真结果进行了间接验证。结果表明:单晶铜切削层初始温度的可选范围为293~400 K;在此范围内,随着切削层初始温度的升高,切削力大小变化显著,但波动平稳,晶格结构的转变速度也随之增快;当切削层初始温度设为360~390 K范围内时,单晶铜工件的表层微观缺陷相对较少,由此可预测单晶铜工件在此初始温度范围内加工得到的表面质量较高。  相似文献   

12.
为深入理解单晶锗纳米切削特性,提高纳米锗器件光学表面质量,采用三维分子动力学(MD)模拟方法研究了单点金刚石压头与单晶锗表面的接触和滑动过程。研究了压头在滑动切削过程中的材料变形、切削力、切屑堆积、表面形貌尺寸。仿真结果表明,随着垂直载荷的增加,切削力、表面形貌尺寸、切屑堆积在接触过程中逐渐增加,且与切削速度无明显关联。切削过程中切削力波动的根本原因是由于单晶锗晶格破坏引起位错的产生和能量波动。为了验证仿真结果的正确性,使用纳米划痕仪对单晶锗进行了纳米切削实验。实验结果与仿真结果一致,验证了MD模型的正确性和有效性。  相似文献   

13.
朱瑛  马慧婷  樊虎 《机床与液压》2018,46(24):21-26
基于分子动力学的理论建立了单晶铝的纳米切削仿真模型,比较研究了在刀具未磨损和刀具磨损条件下对切削过程的影响。研究表明:相比于刀具未磨损,在刀具磨损的情况下,已加工表面质量有所下降,基体上出现了大量的位错等缺陷;切削力也全部有所升高,其中刃口半径磨损对切削力影响最为显著,在相同的切削条件,相比于刀具未磨损升高约为17.78%,后刀面磨损和前刀面磨损对切削力的影响基本相同,提高了约7.98%;刀具温度和工件的温度也都有不同程度的升高,其中,工件的温升更高。刀具刃口半径磨损对温升影响最大,达到稳定切削时,刀具的平均温度相比于刀具未磨损升高约为7.2%。  相似文献   

14.
高速切削加工涉及到材料非线性、几何非线性及边界非线性问题.运用大型通用非线性有限元软件对H13淬硬模具钢正交切削加工过程进行非线性弹塑性有限元分析与模拟,研究了不同切削速度、进给量、刀尖半径等工艺参数对加工过程中切屑形状、应力分布、温度分布及工件表面精度的影响.研究结果表明,选取合理的工艺参数能提高工件表面精度和减少刀具的磨损.将模拟结果与实验结果进行比较,两者吻合较好,对实际加工具有一定的指导意义.  相似文献   

15.
单晶Cu材料纳米切削特性的分子动力学模拟   总被引:3,自引:0,他引:3  
建立了单晶Cu纳米切削的三维分子动力学模型,研究了不同切削厚度下纳米切削过程中工件缺陷结构和应力分布的规律.纳米切削过程中,在刀具的前方和下方形成变形区并伴随缺陷的产生,缺陷以堆垛层错和部分位错为主.在纳米尺度下,工件存在很大的表面应力,随着切削的进行,工件变形区主要受压应力作用,已加工表面主要受拉应力作用.随着位错在晶体中产生、繁殖及相互作用,工件先后经过弹性变形——塑性变形——加工硬化——完全屈服4个变形阶段,随后进入新的循环变形.结果表明:工件应力-位移曲线呈周期性变化;切削厚度较小时,工件内部没有明显的层错产生,随着切削厚度的增大,工件表面和亚表层缺陷增加;切削厚度越大,对应应力分量值越小.  相似文献   

16.
目的 探究钛合金清洁切削过程中能量消耗的变化与加工表面完整性的关系,通过切削参数优化选择,以实现加工表面质量的控制,从而提高钛合金高效洁净制造零件的使用寿命和服役性能。方法 本文提出一种基于能量消耗的过程签名方法,来描述多工步清洁切削加工过程与加工表面完整性的相互影响。建立了净切削比能计算模型,结合钛合金两工步铣削试验,分析了粗加工参数变化对粗加工、精加工切削力,以及净切削比能的影响规律,并进一步对两工步加工过程中的净切削比能展开研究。本文研究了不同粗加工参数条件下粗加工和精加工表面残余应力及微晶尺寸的变化规律。结果 切削力和切削参数的变化均会影响净切削比能的大小。多工步切削加工过程中,粗加工和精加工切削参数的不同会改变净切削比能,进而引起表面完整性的变化。对切削比能影响最大的是径向切深,其次是进给量、切削速度。随着进给量和径向切深的增大,切削比能降低;随着切削速度的升高,净切削比能先增大后减小。净切削比能较大时,加工表面层残余应力较大,微晶尺寸较小。结论 在保证加工质量的前提下,从节能降耗的角度出发,选取合适的切削速度、较大的切削深度、进给量,从而降低净切削比能、减少能量消耗,提高加...  相似文献   

17.
采用分子动力学方法研究了6H-SiC脆性切削的声发射响应。研究了原子尺度下6H-SiC的微变形和裂纹形核,同时对加工过程中的声发射源进行了识别,分析了其相应的声发射特征。结果表明,6H-SiC在77 nm切削深度下的脆性变形过程简单但不寻常;在6H-SiC切削过程中位错不会连续扩展,变形后的工件在刀具挤压作用下被分割成块,并由位错的快速扩展引发裂纹。对于影响声发射源特征的因素研究发现:初始压应力会导致声发射功率的下降;频率-能量分析中可见的3种声发射源分别是晶格振动、位错扩展和裂纹扩展。此外,在1 K温度下,2次明显的位错传播的声发射响应比晶格振动具有更高的频率特性,但总能量水平最低。相反地,裂纹扩展的声发射响应具有更为明显的频率分布特性和能量特性。  相似文献   

18.
针对超声液流切削中零件表面易出现的质量问题,对其影响因素进行深入分析,表明零件的表面质量与切削台参数、切削过程工艺参数及液压系统参数有密切的关系。只有充分地考虑这些参数,才能得到高质量的加工表面。同时提出了超声液流切削仿真基础研究应考虑的因素。  相似文献   

19.
基于建立的新型三维仿真模型,采用分子动力学方法模拟单晶铜(100)表面纳米加工过程,研究材料的去除机理和纳米加工过程中系统的温度分布与演化规律。仿真结果表明:系统的温度分布呈同心型,切屑温度最高,并且在金刚石刀具中存在较大的温度梯度。采用中心对称参数法区分工件中材料缺陷结构的形成与扩展。位错和点缺陷是纳米加工过程中工件内部的主要缺陷结构。工件中的残余缺陷结构对于工件材料的物理属性和已加工表面质量具有重要影响。位错的成核与扩展、缺陷结构的类型均与纳米加工过程中系统的温度有关。加工区域温度升高有利于位错从工件表面释放,使工件内部位错结构进一步分解为点缺陷。采用相对高的加工速度时,工件中残留缺陷结构较少,有利于获得高质量的加工表面。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号