首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
利用拉伸试验机、扫描电镜和X射线衍射仪研究了临界区退火时间对0.21C-4.1Mn-1.85Si-0.05Nb-Fe冷轧中锰钢组织性能的影响。结果表明,随退火时间增加,铁素体比例降低,残留奥氏体含量先增加后降低,马氏体尺寸不断增加,试验钢的屈服强度先升高后逐渐降低,抗拉强度先降低后升高,伸长率和强塑积先增加后逐渐降低。退火10 min,工程应力-工程应变曲线表现为连续屈服,但加工硬化能力不足导致塑性最差。增加退火时间,工程应力-工程应变曲线出现屈服平台,但较大应变范围内不断出现的TRIP效应使得试验钢保持了持续的加工硬化能力,塑性提升。690℃退火60 min,试验钢的综合力学性能最佳,抗拉强度为1036.9 MPa,伸长率25.6%,强塑积可达26.5 GPa·%。  相似文献   

2.
研究了650℃下退火时间对冷轧Fe-0.14C-5Mn钢的组织结构和力学性能的影响规律,利用SEM进行了组织结构表征,采用XRD法测量了残留奥氏体量,通过拉伸试验机测试了钢的单轴拉伸性能。结果表明,退火过程中发生奥氏体逆转变,退火1min以后即形成20%以上的亚稳奥氏体;随退火时间的延长,抗拉强度(Rm)逐渐升高,屈服强度逐渐降低;断后伸长率(A)和强塑积(Rm×A)先升高而后降低,在650℃退火10 min时塑性(46%)和强塑积(46 GPa%)获得最大值。分析认为高含量亚稳奥氏体相的TRIP效应以及超细的晶粒尺寸是获得超高强度、超高塑性及高的强塑积的主要原因。  相似文献   

3.
利用金相显微镜、扫描电镜、X射线衍射仪和力学检测手段对不同等温热处理后700 MPa级冷轧TRIP钢的组织和力学性能进行了研究。结果表明:随着等温热处理温度和时间的增加,TRIP钢中贝氏体的含量增加,残余奥氏体的含量减少。随着等温温度的升高,TRIP钢的抗拉强度、屈服强度、伸长率都是先增高后降低;随着热处理时间的增加,TRIP钢的抗拉强度、屈服强度升高,而伸长率会降低。当TRIP钢在840℃退火5 min后,其最佳的等温热处理工艺为430℃保温10 min,试样的抗拉强度为740 MPa、屈服强度为510 MPa、伸长率为34%。  相似文献   

4.
采用连续退火模拟机CCT-AY-Ⅱ对中锰QP钢(0.2C-5Mn-1.5Si中锰钢,锰含量4.92%)进行热处理实验,利用SEM、EBSD、拉伸试验以及X射线衍射法研究了不同退火温度对中锰QP钢的组织和力学性能、残留奥氏体含量的影响。结果表明,随退火温度的升高,抗拉强度逐渐升高,屈服强度逐渐降低,伸长率和强塑积先升高后降低,在660℃奥氏体化QP处理后力学性能最佳,抗拉强度为1040 MPa,断后伸长率为33.7%,强塑积达35.9 GPa·%;残留奥氏体体积分数随着退火温度的升高逐渐增多,最高达25%;试验钢对两相区奥氏体化温度非常敏感,稍高或稍低的退火温度都会导致强塑积的急剧下降,而在650~670℃之间退火时强塑积可达30.0 GPa·%以上。  相似文献   

5.
采用CCT-AY-Ⅱ型钢板连续退火机对高强TRIP钢进行热处理,获得铁素体、贝氏体,残留奥氏体和少量马氏体的组织。采用SEM、EBSD等微观方法观察制备的TRIP钢的微观组织,利用XRD法测量了残留奥氏体量,实验测量了其力学性能。结果表明:820℃两相区退火,410℃贝氏体区后实验钢获得良好的综合力学性能,屈服强度达到804 MPa,抗拉强度928 MPa,总伸长率27.55%,强塑积25.57 GPa·%。这主要是退火后实验钢合适的相比例以及一定量残留奥氏体共同作用的结果;实验钢在高速拉伸下,应力随应变的增加而增加,实验钢在高速下表现出良好的力学性能,不仅具有很高的强度,而且表现出良好的塑性,高速下实验钢良好的力学性能是因为钢中大量残留奥氏体发生TRIP效应造成的。  相似文献   

6.
采用CCT-AY-Ⅱ型钢板连续退火机对高强TRIP钢进行热处理,获得铁素体、贝氏体,残留奥氏体和少量马氏体的组织。采用SEM、EBSD等微观方法观察制备的TRIP钢的微观组织,利用XRD法测量了残留奥氏体量,实验测量了其力学性能。结果表明:820℃两相区退火,410℃贝氏体区后实验钢获得良好的综合力学性能,屈服强度达到804 MPa,抗拉强度928 MPa,总伸长率27.55%,强塑积25.57 GPa·%。这主要是退火后实验钢合适的相比例以及一定量残留奥氏体共同作用的结果;实验钢在高速拉伸下,应力随应变的增加而增加,实验钢在高速下表现出良好的力学性能,不仅具有很高的强度,而且表现出良好的塑性,高速下实验钢良好的力学性能是因为钢中大量残留奥氏体发生TRIP效应造成的。  相似文献   

7.
采用SEM、TEM、显微硬度分析和抗拉强度测试等方法,研究了两相区退火温度、保温时间和冷却方式对中锰钢组织和力学性能的影响。结果表明:随着退火温度的提高,试样的抗拉强度逐渐升高,屈服强度和屈强比逐渐降低,均匀伸长率和加工硬化指数先升后降,此结果与相变诱发塑性(TRIP)效应有密切的关系;随着保温时间的延长,试样抗拉强度变化不大,屈服强度和屈强比逐渐减小,均匀伸长率和加工硬化指数逐渐增大;空冷样品的屈服强度、均匀伸长率、断后伸长率较炉冷样品的有明显提高。  相似文献   

8.
在实验室利用Multipas多功能连续退火模拟器,对低碳冷轧TRIP钢进行了研究,探讨了退火温度与贝氏体等温温度对600 MPa冷轧TRIP钢组织与力学性能的影响规律。结果显示:当贝氏体等温温度相同时,随着退火温度的升高,组织中铁素体与贝氏体块尺寸减小,且贝氏体转变的鼻尖温度向较高温度移动。780 ℃退火时,随着等温温度的升高,屈服强度、伸长率与屈强比呈现下降趋势,而抗拉强度呈上升趋势;800 ℃与820 ℃退火时,随着等温温度的升高,屈服强度、伸长率与屈强比先上升后下降,而抗拉强度先下降后上升。在相同贝氏体区等温温度下,780 ℃退火时的屈服强度与屈强比最小,而抗拉强度最高;800 ℃退火时的强塑积与综合力学性能最好。  相似文献   

9.
研究了高锰钢在不同连续退火并水淬后的显微组织和力学性能。结果表明,随着水淬温度升高,钢抗拉强度、屈服强度和屈强比逐渐降低,加工硬化性能提升,而强塑积和伸长率呈现先升后降的趋势,在800℃最高;钢的组织为单相奥氏体组织,晶粒尺寸大小均匀,存在大量退火孪晶。  相似文献   

10.
采用CCT-AY-Ⅱ型钢板退火模拟实验机对一种含钒TRIP800钢进行连续退火,研究了贝氏体区等温温度对试验钢的组织和力学性能的影响。利用SEM、TEM和EDS等微观分析方法对试验钢进行了组织结构和成分表征,利用XRD法测量残留奥氏体量,通过拉伸试验机测试试验钢的单轴拉伸性能。结果表明,随贝氏体区等温温度升高,贝氏体和残留奥氏体含量增加,伸长率与屈服强度先上升后下降,抗拉强度先下降后上升;经410℃等温处理后,TRIP800钢抗拉强度达890 MPa,伸长率高达29.29%,强塑积达26068 MPa·%,综合力学性能优异;含钒TRIP钢的主要析出物为V(C,N),且主要在软相铁素体中析出。  相似文献   

11.
对传统淬火-配分钢(QP钢)添加合金元素Ni和Nb,并对实验钢采用两相区QP工艺处理,得到了一种超细晶QP钢,分析了实验钢的显微组织和力学性能。结果表明,该种成分钢得到了块状铁素体+块状马氏体+残留奥氏体的混合组织,且晶粒达到了亚微米级别。由于残留奥氏体的相变诱发塑性(TRIP)效应,使得实验钢获得了兼具强度和塑性的优异力学性能。在退火温度为690℃时,实验钢抗拉强度达到1195 MPa,断后伸长率为23.5%,强塑积达到28 GPa·%。  相似文献   

12.
詹华  邹英  周凯  胡智评  许云波  肖洋洋 《轧钢》2017,34(3):69-73
采用连续退火模拟试验机研究了连续退火工艺中缓冷及过时效温度对DP980冷轧高强钢组织性能的影响规律,并利用扫描电镜、透射电镜及拉伸试验机进行了显微组织及力学性能检测。研究结果表明:缓冷温度降低有利于新生铁素体及富碳岛状马氏体的生成,且实验钢屈服强度基本不变,抗拉强度先下降后升高,伸长率逐渐上升。缓冷温度为650 ℃时,强塑积(PSE)达到最大值15.55 GPa·%。随着过时效温度的升高,实验钢抗拉强度及屈服强度略有下降,断后伸长率显著升高。工业试制HC550/980DP成品的屈服强度不小于570 MPa,抗拉强度不小于1 080 MPa,伸长率不小于7%,达到应用标准。  相似文献   

13.
对含硅的低碳中锰钢进行Q&P处理,获得了回火马氏体、新生马氏体和残留奥氏体的混合组织,利用SEM、TEM、XRD和拉伸试验机等检测手段研究不同热处理工艺下微观组织结构及力学性能。结果表明,随着淬火温度的提高,试验钢的抗拉强度先降低后升高,屈服强度则一直降低,总伸长率先升高后降低。淬火温度为250 ℃时,试验钢的综合力学性能最好,抗拉强度为1331 MPa,断后伸长率为17.3%,强塑积可达23 GPa·%。这主要是由于组织中一定比例的膜状残留奥氏体发挥TRIP效应,拉伸变形阶段表现出持续的加工硬化能力,获得更好的强塑匹配。淬火温度为270 ℃时,由于残留奥氏体的稳定性降低,组织内存在大量新生马氏体,使塑性下降。  相似文献   

14.
对0.2C-2.96Mn-1.73Si钢进行IQP(Intercritical heating quenching and partitioning)处理,获得超细化铁素体、马氏体和残留奥氏体多相组织。采用SEM、XRD和拉伸试验机研究了配分温度对试验钢显微组织和力学性能的影响。结果表明,随配分温度的升高,试验钢的抗拉强度逐渐下降,屈服强度和伸长率均先增大后减小。试验钢中残留奥氏体含量随配分温度的升高呈先增加后降低的趋势。配分温度为400 ℃时,残留奥氏体的含量最高,TRIP效应能够提供持久的加工硬化,试验钢获得了最高的均匀变形能力,抗拉强度为1444 MPa,伸长率为20.13%,强塑积达到29 GPa·%,综合力学性能最佳。  相似文献   

15.
在实验室模拟研究了连续退火工艺对TRIP780钢组织性能的影响。结果表明:缓冷温度的升高会导致抗拉强度的增加,断后伸长率和屈服强度则变化不大;在其它工艺条件一致的情况下,缓冷温度为700℃时强塑积最高,达到了21.4 GPa·%;时效温度在375~425℃之间,随着温度的上升,抗拉强度不断下降,断后伸长率上升;当温度继续上升到450℃时,抗拉强度和断后伸长率变化规律则相反,强塑积和残留奥氏体碳含量达到最低值;时效温度为400℃时,实验用钢能获得最佳的综合力学性能。  相似文献   

16.
分析了不同退火温度的TRIP/TWIP试验钢组织和性能。结果表明,在退火均热温度780℃时伸长率相对偏低,在800℃时屈服强度最高,退火均热温度对抗拉强度的影响较小,对伸长率的影响较大,不同退火均热温度下试验钢均没有明显屈服平台。试验钢的组织主要为奥氏体,变形前亚结构有退火孪晶出现,晶粒尺寸随着退火温度的升高而变得粗大,变形后形变孪晶数量随着退火温度的升高而增多。因TWIP效应和TRIP效应,试验钢具有高强度和高塑性。  相似文献   

17.
研究了热处理对汽车用DP590双相钢组织和力学性能的影响。结果表明:随着退火温度升高,双相钢组织中马氏体岛平均等效圆直径和面积分数增加,当退火温度820℃时,平均等效圆直径和面积百分数分别达到1.82μm和19.21%;随着退火温度的增加,双相钢抗拉强度逐渐降低,屈服强度逐渐增加,最佳退火温度为800℃,此时抗拉强度为642 MPa,屈服强度为326 MPa,伸长率为21.9%。DP590双相钢最佳时效处理制度为320℃保温10min,此时抗拉强度为644MPa,屈服强度为331 MPa,伸长率为24.5%。  相似文献   

18.
研究了热轧汽车用超细晶亚稳钢两相区温度630℃下退火时间对组织和力学性能的影响,利用SEM、TEM等方法对实验钢进行了组织结构表征,利用XRD法测量了室温组织中的残留奥氏体量,通过拉伸试验机测试了钢的单轴拉伸性能。结果表明:在630℃下退火,保温5 min后室温组织中存在50%以上的亚稳奥氏体,随着保温时间的延长,残奥含量先增加后减少,残奥含碳量逐渐降低;抗拉强度先逐渐升高然后略有降低,但都保持在1100 MPa以上,伸长率也先增加后减小;在630℃保温3 h后,断后伸长率(33.5%)和强塑积(38.3 GPa·%)获得最大值,抗拉强度达到1142 MPa,综合力学性能最佳。分析认为,热轧钢中大压下产生大量的位错、畸变和在两相区退火中奥氏体的形核与长大是实验钢获得组织超细化的原因;大量亚稳奥氏体的TRIP效应和超细晶基体共同作用实现了实验钢高强度和高塑性。  相似文献   

19.
采用计点法定量金相、静态拉伸试验等方法,研究了含磷低硅TRIP钢的组织和力学性能.结果表明,随两相区退火温度的升高,试验钢的抗拉强度、延伸率、n值、强塑积都上升,而随着贝氏体区等温时间的增长,试验钢的屈服强度、抗拉强度、延伸率、n值、强塑积都下降.试验钢经800℃退火1.5min和400℃等温50s处理后可以获得好的相变诱发塑性和好的综合力学性能,其强塑积可达21876 MPa%.  相似文献   

20.
采用扫描电镜(SEM)、电子背散射衍射(EBSD)技术和透射电镜(TEM)对复相钢的微观形貌进行表征,并研究了其基于相变诱导塑性(TRIP)效应的强塑性机制。结果表明,将退火温度设定在单相奥氏体区和(γ+α)两相临界区,由于微观形貌特征的不同致使试验钢的力学性能有着显著的区别。退火温度(915℃)在单相奥氏体区时,微观组织由27%先共析铁素体、56%块状贝氏体以及分布于晶界处的17%残留奥氏体组成;组织中的先共析铁素体,其塑性优于再结晶铁素体,更有利于发挥协调变形作用,通过缓解应力对残留奥氏体的作用而有效发挥其TRIP效应;同时均匀分布于晶界处纵横比>2.0的块状残留奥氏体,在变形过程中由于受到相界面及块状硬质相贝氏体的阻碍,TRIP效应的贡献较大且可在整个应变阶段持续地发生。在晶粒尺寸、组织形貌、晶体学结构、V(C,N)析出和位错塞积,以及TRIP效应的共同作用下,915℃退火后复相钢的综合力学性能最优,屈服强度和抗拉强度分别为756和1135 MPa,强塑积可达到26.446 GPa·%,同时具有优良的伸长率和扩孔性能,分别为23.3%和56%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号