首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
为了探讨通电时间对镁合金微弧氧化陶瓷层形成和生长过程的影响规律,利用高速相机记录微弧放电状态,采用扫描电子显微镜观察膜层表面形貌,借助电化学测试分析膜层表面阻值,根据电压变化曲线计算能量消耗。结果表明:随微弧氧化时间增加,镁合金表面微弧放电斑点由边缘逐渐扩展至整个表面,放电强度增大且数量增多;微弧氧化初期,样品表面有含氧元素的不规则颗粒生成,数量逐渐增多,直至起弧瞬间形成孔径小于0.2μm的放电微孔;随微弧氧化时间增加镁合金表面阻值增大,直至3.1×104Ω时出现明显微弧放电现象;镁合金微弧氧化各时间段所消耗能量逐渐升高,陶瓷层生长阶段能量消耗54.62 k J明显高于起弧阶段的7.98 k J。  相似文献   

2.
张昕  王婷  白晶  薛烽  储成林 《表面技术》2021,50(2):39-47
目的 通过控制微弧氧化工艺参数来优化纯锌的耐蚀性,以实现临床降解的可控性.方法 通过设置正向电压、反应时间、占空比、负向电压和分段处理等,在纯锌表面制备微弧氧化膜层.利用扫描电镜(SEM)观察膜层的表面形貌和截面厚度,结合能谱仪(EDS)和X射线衍射仪(XRD)分析膜层元素和相结构,采用表面张力测量仪和电化学极化曲线分析润湿性和耐蚀性.结果 通过提高正向电压,降低占空比,控制处理时间和负向电压,可有效降低膜层孔隙率和腐蚀速度.微弧氧化处理可明显增强试样表面亲水性,分段处理对润湿性和耐蚀性有显著影响.当正向电压为300 V,占空比为10%,反应时间为5 min,负向电压为–100 V时,可获得亲水性好、耐蚀性强的微弧氧化膜层,其孔隙率为10.95%,膜层厚度为5.29μm,腐蚀电流密度达5.74×10–6 A/cm2.结论 微弧氧化处理可明显增强纯锌表面润湿性,可通过调节不同微弧氧化工艺参数改变膜层结构,优化其亲水性和耐蚀性.  相似文献   

3.
溶质离子在镁合金微弧氧化膜形成过程中的作用   总被引:3,自引:1,他引:2  
利用交流脉冲微弧氧化电源在NaF、NaCl和NaI三种电解液中对AZ31镁合金样品进行处理,采用SEM、XPD和XPS观察分析溶质离子对镁合金样品表面形貌、相组成及起弧前后微弧氧化膜层成分的变化。结果表明:微弧氧化现象只发生于NaF电解液中,起弧前样品表面的沉积膜为MgF2,起弧后膜层由MgF2和MgO两相组成;NaCl和NaI电解液中的两组样品既无微弧氧化现象发生,又未发现任何沉积膜层;微弧氧化初期阳极放电产生的金属阳离子与溶液中的阴离子形成沉积于样品表面的高阻抗膜层是微弧氧化过程进行的必要条件。  相似文献   

4.
利用脉冲微弧氧化电源研究1015铝合金于不同浓度硅酸钠水溶液中的起弧过程,借助扫描电子显微镜和电化学测试方法分析硅酸钠浓度对起弧瞬间膜层微观结构和表面阻值的影响,并根据电压变化曲线计算起弧过程的能量消耗。结果表明:当溶液中硅酸钠浓度为0时,即使极间电压升至1 500 V,铝合金表面仍无微弧放电现象出现,并发生电解腐蚀;随着硅酸钠浓度由0.25 g/L增加至10 g/L时,铝合金表面发生微弧放电现象所需的电压由1 217 V降低至351 V,通电至起弧的等待时间由270 s缩短至40 s,起弧瞬间膜层表面放电微孔数量增多;铝合金表面形成阻值达105数量级的高阻抗膜是发生微弧放电现象的前提,硅酸钠浓度的增大有利于形成高阻抗膜;铝合金微弧氧化起弧过程的能量消耗随着电解液中硅酸钠浓度的增大而减小,并在硅酸钠浓度为10 g/L时达到最小值,仅为16 kJ/dm2。  相似文献   

5.
为研究AZ91D表面微弧氧化过程中的放电现象及膜层特性,采用高速摄像机记录微弧氧化试样表面在Na2Si O3-Na OH电解液体系下放电过程的瞬间图像。用扫描电子显微镜(SEM)对微弧氧化膜层截面形貌和表面形貌进行观察,利用X射线衍射仪(XRD)分析膜层的相组成。结果表明:AZ91D合金在微弧氧化稳定阶段,放电过程呈周期性变化规律。AZ91D合金微弧氧化膜层由致密层与疏松层构成,靠近基体一侧为致密层,膜层外侧为疏松层,在疏松层表面存在微孔和裂纹缺陷,膜层最大厚度约为169μm。陶瓷膜层主要由Mg O和Mg2Si O4相组成,且以Mg O相为主。  相似文献   

6.
AZ91D镁合金微弧氧化中电源脉冲宽度的影响研究   总被引:1,自引:0,他引:1  
为研究带放电回路的微弧氧化电源脉冲宽度对镁合金微弧氧化的影响,设计了在恒电压增幅和频率为667 Hz的条件下,占空比在10%~90%之间的镁合金微弧氧化实验.研究发现,随着脉冲宽度的增加,起弧电压逐渐降低,大弧倾向增大;膜表面孔洞数量减少且孔径尺寸略有增大;微弧氧化的成膜效率随着脉冲宽度的增加先增大后减小;在占空比30%左右时成膜效率最高,并且膜层的耐蚀性最好.对于频率为667 Hz的镁合金微弧氧化,脉冲宽度控制在300~600μs时成膜效率最高且膜层质量较好.  相似文献   

7.
预制备膜特性对铝合金微弧氧化膜层形成过程的影响   总被引:1,自引:1,他引:0  
利用交流脉冲微弧氧化电源在氯化钠和不同浓度硅酸钠电解液中对LY12铝合金进行表面处理,对比研究了样品表面有无预制备膜对微弧氧化起弧及生长过程的影响规律。结果表明:铝合金样品表面形成较高阻抗值的膜层是微弧氧化起弧现象得以发生的必要条件;样品表面获取预制备膜抑制了活性电极放电并为后期电击穿提供一个易"失稳"的界面状态,有利于缩短微弧氧化起弧时间,降低起弧电压,但预制备膜厚度和阻抗值大小对起弧时间和电压影响均较小;样品表面有无预制备膜微弧氧化电压-时间曲线有着相似的变化规律,且预制备膜在后期生长过程中重新参与成膜,在相同能量输出条件下所得陶瓷层厚度明显大于无预制备膜铝合金。  相似文献   

8.
采用扫描电镜和金相显微镜系统研究了系列电压下AZ91D镁合金的表面氧化膜形成过程,讨论了微弧氧化膜层形成规律及成膜机制。结果表明:在试验电压范围内,微弧氧化起弧过程可以分为3个阶段:第1阶段为局部腐蚀与氧化相互竞争阶段,在表面缺陷处首先开始腐蚀,形成疏松的氧化膜,同时伴随水的电解过程;第2阶段为微区放电阶段,表面整体被氧化,形成少量孔洞的较致密氧化膜层,水的电解过程加剧;第3阶段为弧光放电阶段,氧化剧烈,膜层在电弧作用下击穿形成连通的孔洞,且孔洞直径和数量增加。  相似文献   

9.
电参数对AZ91D镁合金微弧氧化过程和膜层的影响   总被引:1,自引:0,他引:1  
在硅铝复合电解液中,采用不同的电参数在AZ91D镁合金表面制备微弧氧化膜。利用扫描电镜(SEM)观察了膜层表面微观形貌;通过膜层测厚仪测量了氧化膜的厚度。结果表明,随着电流密度、占空比或者氧化时间的增大,膜层的不均匀程度都逐渐增大,表面放电孔洞尺寸变大,数量减少;电流密度大于10A/dm2或氧化时间超过15min时,微弧氧化过程会出现熄弧阶段;膜层厚度随着电流密度的增加而呈现近似线性增加后趋于稳定的变化趋势;而随着占空比或者氧化时间的延长,膜层厚度则逐渐增大。  相似文献   

10.
为了解电压在镁合金微弧氧化中的作用,本工作在双极性脉冲电源的恒流加载方式下,通过考察电压对氧化时间、膜层厚度及表面形貌的影响,研究电压对微弧氧化机理的影响。结果发现,当负电压为零,占空比20%和30%时,电压低于380V时所需的氧化时间要短于电压高于380V时的氧化时间。当占空比30%,负电压为零和40V时,电压低于340V的氧化时间和膜层增长速率都小于电压高于340V的;电压低于340V时的膜层表面形貌优于340V以上膜层。可见,微弧氧化过程中存在一个临界电压,微弧氧化过程分成两种情况,两种情况的微弧氧化机理不尽相同。  相似文献   

11.
吴琴 《热处理》2010,25(4):35-38
应用微弧氧化技术在纯钛表面制备了含羟基磷灰石的氧化物膜。在氧化过程中,将钛试件放入含磷酸二氢钠(NaH2PO4.H2O)和乙酸钙((CH3COO)2Ca.H2O)的电解液中,用双脉冲交流电源处理。用扫描电镜(SEM)观察试件的表面形貌,用普通光学显微镜(OM)观察试件的截面形貌,用X射线衍射(XRD)分析其显微结构。结果表明,微弧氧化处理后,纯钛表面生成了内层致密外层多孔的氧化膜。  相似文献   

12.
目的研究微弧氧化过程的温度场分布情况对成膜过程及表面形貌的影响。方法以7075铝合金微弧氧化过程中的一个放电通道为研究对象,基于多物理场仿真软件COMSOL Mutiphysics建立了微弧氧化传热过程的数学模型及物理模型。基于有限元法求解出微弧氧化成膜过程的温度场分布,选择特定参考线及参考点,绘制了温度-时间曲线。选择0、100、500、1000μs四个关键时间点,绘制了对应的温度-纵向深度曲线、温度分布云图及温度梯度分布云图,并探究其对陶瓷层表面形貌的影响。结果在0~100μs时,放电通道区域温度下降速率最快;在100~500μs时,温度下降速率逐渐减小;在500~1000μs时,温度下降速率最小且趋于不变。相对于放电通道中心区域,靠近氧化铝膜层-铝合金基体界面区域温度下降速率较快,温度梯度较大;在0、100、500、1000μs时,最高温度所在位置的纵向深度依次为93、20、26、38μm,呈现先减小后增大的趋势。结论电解液对微弧氧化过程的冷却作用主要集中于放电通道形成后的100μs内。除电解液外,氧化铝膜层-铝合金基体界面在微弧氧化成膜过程中有一定的冷却作用,而放电通道各区域冷却速率不均衡是氧化膜表面形成火山口状孔洞的主要原因。  相似文献   

13.
镁合金微弧氧化陶瓷层形成及生长过程的研究   总被引:11,自引:1,他引:11  
研究了MB8镁合金在硅酸盐溶液体系中微弧氧化陶瓷层形成及生长过程的形貌特征。结果表明:整个过程可分为3个阶段,即阳极沉积阶段、微弧阶段和局部弧光阶段。阳极沉积阶段是在阳极表面发生团絮氧化膜沉积与扩展的过程。微弧阶段是前期缺陷减少与消失并形成均匀膜层表面的过程,陶瓷层表面微孔孔径较小,膜层均匀致密。局部弧光阶段形成的放电微孔孔径较大,陶瓷层比较疏松。  相似文献   

14.
预制膜对铝合金微弧氧化陶瓷层生长过程的影响   总被引:1,自引:1,他引:0  
在磷酸盐体系电解液中,利用微弧氧化技术,分别对有、无高温氧化预制膜的铝合金进行表面陶瓷化处理,研究了预制膜对陶瓷层生长的影响规律.结果表明:高温氧化预制膜有利于提高陶瓷层的生长速率,降低起弧电压;陶瓷层的生长先是以初期形成的陶瓷颗粒为核心呈线状扩展,然后多条线接合呈网状,最后蔓延成面;陶瓷层生长的初期以高温氧化预制膜熔化生成为主,到后期,则是以铝合金基体熔化生成为主,此时预制膜对陶瓷层生长过程的影响较小,但由预制膜生成的陶瓷对陶瓷层生长的影响较大.  相似文献   

15.
为进一步探究微弧氧化膜和7050铝合金的氢脆敏感性之间的关系,采用了湿空气中的慢应变速率拉伸、拉伸断口形貌分析、微弧氧化试样表面形貌分析及氢含量测试等表征手段,验证了微弧氧化膜抑制7050铝合金在湿空气中发生氢脆的机制。结果表明,不同微弧氧化电压下制备的膜层对7050铝合金具有不同的抑制氢脆效果,抑制机制主要由膜阻氢进入试样和膜致附加压应力两个方面组成。  相似文献   

16.
目的研究石墨烯纳米片对D16T铝合金耐磨耐蚀性的影响,为铝合金表面微弧氧化处理技术在油气领域的应用提供理论依据。方法利用微弧氧化技术在含与不含石墨烯的电解液中在D16T铝合金表面制备微弧氧化膜层,采用XRD、SEM、EDS分析了膜层相结构和表面形貌,测试了膜层的粗糙度和显微硬度,通过摩擦磨损和电化学实验研究了石墨烯纳米片对D16T铝合金微弧氧化膜耐磨性和耐蚀性的影响。结果微弧氧化膜层主要由α-Al2O3和γ-Al2O3相组成,石墨烯的添加使Al2O3相的衍射峰值和衍射峰的数量增加,Al衍射峰明显降低;膜层表面平整,表面熔融颗粒较少,表面有大块团聚物堆积。膜层由外部疏松层和内部致密层组成,疏松层微孔数量和微裂纹较少,膜层厚度稍有增加,致密层厚度由不含石墨烯时的0.6μm增至1.6μm。含石墨烯的膜层容抗弧半径明显增加,Bode图中低频阻抗值由5×10^5Ω·cm^2提升至106Ω·cm^2,疏松层电阻由1.57×10^5Ω·cm^2增至1.98×10^5Ω·cm^2,致密层电阻由3.07×10^5Ω·cm^2提升至1.24×106Ω·cm^2;膜层自腐蚀电位由-0.53 V提高至-0.41 V,自腐蚀电流密度由3.15×10^-7 A/cm^2降低至3.97×10^-8 A/cm^2;膜层质量磨损量明显降低,摩擦系数减小,耐磨性增加。结论石墨烯纳米片通过放电通道进入膜层填充膜层中的孔和裂纹,部分石墨烯形成团状覆于膜层表面,使膜层更加平整、致密,膜厚增加,膜层耐磨性和耐蚀性得到明显提升。  相似文献   

17.
在电解液中加入不同浓度石墨烯添加剂,通过微弧氧化在ZL109铝合金表面制备了石墨烯复合陶瓷膜,通过测厚仪和硬度计对膜层进行检测;然后对最佳浓度处理试件进行摩擦磨损试验,分析其摩擦因数、表面形貌以评价石墨烯添加剂对微弧氧化复合陶瓷膜摩擦性能的影响和作用机理。结果表明:石墨烯添加剂的加入使微弧氧化膜层具有更加优异表面性能和抗磨减摩性能,在浓度为6 g/L时膜层厚度达29.68 μm,硬度达到990.12 HV0.3,摩擦因数稳定在0.19,较普通陶瓷膜摩擦因数显著降低,达34.48%。在磨擦过程中,石墨烯对摩擦副表面的凹槽和划痕进行了填充,表面珩磨纹更加细密;同时,复合添加剂在磨擦过程中形成了C元素薄膜,起到了自修复作用。  相似文献   

18.
目的分析Ti N颗粒在镁合金微弧氧化过程中的作用,并研究其在膜层中对镁合金硬度、耐磨和耐蚀等性能的影响。方法通过在微弧氧化电解液中添加2.7μm Ti N颗粒,并使其充分分散于电解液中,使电解液中Ti N颗粒的质量浓度分别为0、2、4、6 g/L,并控制其他实验参数(如电流密度、频率、占空比和氧化时间)一样的情况下进行实验,通过电子显微镜、涂层厚度测厚仪、显微维氏硬度计、X射线衍射和电化学工作站,分别从膜层的表面形貌、厚度、硬度、相组成及耐蚀性等方面,研究了Ti N颗粒对镁合金微弧氧化膜层性能的影响。结果在微弧氧化电解液中添加Ti N颗粒后,相同电化学参数下制得的微弧氧化膜层变得致密,厚度、硬度有所增加,氧化膜层主要由Mg、MgO、Mg2Zr5O12、Ti N组成。极化曲线显示,加入Ti N颗粒,制备的微弧氧化膜层比未加入Ti N颗粒制得的膜层的腐蚀电流下降了2个数量级。阻抗图谱表明,电阻值增加了1个数量级。结论 Ti N颗粒能够随镁合金的微弧氧化过程进入制得的氧化膜层中,并且能够增加膜层厚度和硬度,使膜层的耐磨、耐蚀性得到提高。  相似文献   

19.
镁合金微弧氧化体系中四硼酸钠的作用机理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用扫描电镜、电化学工作站等分析手段,探讨了镁合金微弧氧化体系中四硼酸钠添加对膜层组织结构及耐蚀性的影响规律,分析了四硼酸钠在镁合金微弧氧化膜层形成及生长过程中的作用机理。研究发现:微弧放电发生前,(B_4O_7)~(2-)与Mg离子结合于阳极表面形成难溶于水的偏硼酸镁;随着四硼酸钠含量的增加,沉积于阳极表面的偏硼酸镁结构由3 g/L时的颗粒状逐步过渡到15 g/L的网状结构;这些具有高阻抗特性的偏硼酸镁沉积层的形成为微弧放电过程的进行构建出了合适的电场条件;微弧放电发生后,沉积于阳极表面的偏硼酸镁通过提高等脉宽恒峰值电流条件下的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号