首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
采用恒电流沉积方法和X射线能谱(EDS)技术,研究了碱性Zn-Ni合金的主要电沉积工艺参数对镀层组成的影响规律,获得了Ni含量稳定为(11~13)mass%的Zn-Ni合金镀层,证实了Zn-Ni合金的共沉积过程遵循异常共沉积机制。采用扫描电镜(SEM)、原子力显微镜(AFM)和X射线衍射仪(XRD)等对优化的Zn-Ni合金镀层进行了表征,发现镀层主要具有γ相(NiZn3)结构,其表面平整、致密、光亮;腐蚀测试表明Zn-Ni合金镀层具有优良的耐蚀性能。  相似文献   

2.
    采用中性盐雾试验对Zn-Ni合金镀层的耐蚀行为进行了研究,并用扫描电镜、辉光放电光谱仪和X射线衍射仪等手段分析了不同Ni含量的Zn Ni合金镀层的微观形貌与结构、成分变化规律以及腐蚀产物.结果表明:(1)随着镀层的不断沉积,Ni的含量先增加后减小,在镀层中出现Ni的富积层;(2)Ni含量在5%~15%范围内时,Zn-Ni合金镀层的相结构体现出很复杂的结构特征:(3)经过钝化处理的Zn-Ni合金镀层的耐蚀性远高于镀Zn钝化层、镀Cd钝化层和Cd-Ti合金镀层的耐蚀性;(4)Zn-Ni合金镀层腐蚀产物主要是ZnO和ZnCl2·4Zn(OH)2,并且含有少量的2ZnCO3·3Zn(OH)2.  相似文献   

3.
为改善传统渗锌层组织结构及腐蚀性能,采用甲酸镍和锌粉作为渗剂金属,通过机械能助渗法在Q235钢表面制备Zn-Ni合金渗层。结合扫描电镜(SEM)、EDS能谱和X射线衍射仪(XRD),分析Zn-Ni合金渗层的表面、截面和断口形貌;利用极化曲线和电化学阻抗谱(EIS),表征Zn-Ni合金渗层在3.5%NaCl溶液中的电化学行为;通过中性盐雾试验测试Zn-Ni合金渗层的耐腐蚀性能。结果表明:制备得到Zn-Ni合金渗层的厚度为153μm;渗层主要由Γ(Fe_(11)Zn_(40))相、ζ(FeZn_(15))相和Ni_(2)Zn_(11)金属间化合物组成,渗层结合方式属于冶金结合;Zn-Ni渗层中性盐雾试验出现红锈的时间相比渗锌层延长240 h,自腐蚀电位从−1.222 V正移至−0.957 V,渗层电阻提高352Ω·cm^(2);Ni对改善渗层表面组织状态和提高渗层耐腐蚀性具有显著价值。通过添加甲酸镍制备的Zn-Ni合金渗层相比渗锌层组织结构和腐蚀性能得到明显改善。  相似文献   

4.
电沉积Zn—Ni合金的耐蚀性研究   总被引:2,自引:0,他引:2  
在含锌的合金电镀中,已报道的有Zn—Ni,Zn-Sn,Zn-Fe,Zn-Co和Zn-Cd.其中以Zn-Ni和Zn-Fe合金电镀被认为最有发展前途.关于Zn-Ni合金镀层优异耐蚀性的认识源于这样一个实验:四十年代美国宾西法尼亚3S公司(Standerd Steel Spring)在钢铁上先镀一层4μm Ni,后镀一层同样厚度的锌,然后在370℃以下热扩散30到120分钟,得到具有4种晶相的Zn-Ni合金.其腐蚀试验表明,8μm的Zn-Ni合金经盐雾试验1536小时,表面只有2%区域出现腐蚀,同样厚度的Zn镀层,试验1000小时,有25%出现锈蚀.经大气腐蚀试验16个月,这种合金无任何腐蚀,而5μm厚的镍镀层大气试验1个月有25%出现锈蚀.但这种工艺并未获得推广,因为大多数电镀车间并不配备这样的加热炉.然而,Zn-Ni合金所具有的优异防腐蚀性能却大大的推动了人们直接从水溶液中获得Zn-Ni合金的研究.文献[3]介绍了已发表的各种配方与工艺,但其中最关键的光亮剂都以“添加剂”二个字给保密起来了.事实上没有光亮剂的Zn-Ni合金镀层是十分粗糙的,其防护能力不算高.Zn-Ni合金镀层在国内大规模的应用尚不多.在日本,1984年住友金属工业公司,有两条Zn-Ni合金电镀生产线,年产44.4万吨Zn-Ni合金钢板.  相似文献   

5.
用感应熔炼的方法制备了AB_3型La-Mg-Ni系稀土贮氰电极合金,采用X射线衍射、Sievert型测试仪、三电极测试体系研究了合金的相结构、吸氢性能、电化学性能.X射线衍射分析结果表明,AB_3型La-Mg-Ni系稀土贮氢电极合金均南(La,Mg)Ni,相、(La,Mg)_2Ni_7相及少量杂质相组成,为多相结构;贮氢性能实验研究表明,具有PuNi_3结构的LaNi_3,型合金的吸氧量高于具有CaCu_5结构的LaNi_5型合金.  相似文献   

6.
牛丽媛 《表面技术》2008,37(5):19-20,57
为进一步提高镀层的耐蚀性、降低脆性,在含有缩合物添加剂的镀液中制备了结晶为14~33nm的Zn-Ni合金镀层.采用SEM、XRD对镀层的微观形貌及相组成进行了研究.将此Zn-Ni合金镀层作为底层,制备了双层Zn-Ni/Ni-P镀层,结果表明:双层镀层的耐蚀性比装饰铬组合镀层提高1倍以上,而且镀层的氢脆大大降低,尤其适合于高强度零件的电镀.  相似文献   

7.
采用电沉积方法,通过向镀液中加入不同粒径的CeO2颗粒,制得Zn-Ni/微米CeO2复合镀层和Zn-Ni/纳米CeO2复合镀层,研究了CeO2粒子的大小和加入量对镀层微观形貌、相组成、CeO2在镀层中的复合量以及镀层耐蚀性的影响.结果表明:大量加入CeO2,可使镀层呈现块状的“饼干”结构,并能提高镀层的耐蚀性,此外还可以抑制Ni的沉积,加入10 g/L纳米CeO2时,镀层的合金相主要为Ni2Zn11相,其它Zn-Ni合金相则较少;相比之下,在提高镀层CeO2复合量方面,微米级CeO2效果较好,在提高镀层耐蚀性方面,纳米级CeO2的效果较好.  相似文献   

8.
目的 提高Zn-Ni合金镀层的耐微生物腐蚀性能。方法 在硫酸盐电镀液中添加梯度浓度的4,5-二氯-N-辛基-4-异噻唑啉-3-酮(DCOIT),利用恒电流沉积方法,在碳钢表面阴极电沉积获得DCOIT复合Zn-Ni合金镀层。通过电沉积电位监测与电流效率计算评价DCOIT对电沉积过程的影响,利用扫描电子显微镜、电子能谱、X射线晶体衍射等研究DCOIT对Zn-Ni复合镀层形貌、结构与Ni含量的影响,使用傅里叶红外吸收光谱和荧光显微观察法验证DCOIT的成功复合及复合镀层的抗菌性能,最后将DCOIT复合Zn-Ni合金镀层暴露于硫酸盐还原菌(SRB)中,监测菌液的pH与菌体浓度,同时计算镀层的腐蚀速率,并观察镀层的腐蚀形貌,评价复合镀层的耐SRB腐蚀性能。结果 DCOIT在电沉积过程中会吸附在沉积表面,造成沉积电位负移,并略微降低了电流效率。DCOIT的添加显著改变了复合镀层的形貌、结构与Ni含量,其Ni含量与DCOIT的添加量呈线性增长关系,导致其晶体结构转变。DCOIT以有效形式存在于复合Zn-Ni合金镀层中,并显示出抗菌性能,DCOIT添加量为2 mmol/L时,镀层中的复合量最高,抗菌性能最好。最后,DCOIT复合Zn-Ni合金镀层能有效抑制环境中SRB的生长与代谢,自身腐蚀速率减慢,耐蚀性能明显增强。结论 DCOIT能够以有效形式复合于Zn-Ni合金镀层内部,并有效提高了镀层的抗菌性能,使其获得增强的耐SRB腐蚀性能。  相似文献   

9.
在AlCl3-EMIC(氯化1-甲基-3-乙基咪唑)或AlCl3-MnCl2-EMIC离子液体中采用电沉积的方法在20#钢表面制备了Al和Al-Mn合金镀层。利用能量色散X射线(EDX)、扫描电镜(SEM)、X射线衍射(XRD)及极化曲线等方法对所制备镀层的组成、形貌、结构和腐蚀性能进行了表征与测试。所制备的Al-Mn合金镀层是致密的,与基体结合良好。电化学实验结果表明,Al和Al-Mn合金镀层的腐蚀速率低于20#钢基体;Mn含量为20.26%的Al-Mn合金镀层显示了最好的耐蚀性。  相似文献   

10.
目的通过电沉积方法在镁锂合金表面制备具有高红外发射率以及高导电率的镀层,满足其在太空中散热以及电磁屏蔽的需要。方法通过前处理工艺(碱洗→酸洗→预钝化→化学镀镍磷→电镀铜)提高镁锂合金基体的耐蚀性能以及与后续镀层的结合力,并在此镁锂合金前处理工艺的条件下,电沉积多孔Zn-Ni合金镀层。通过热循环测试和电化学方法评价各镀层的电化学腐蚀行为和各镀层之间的结合力。结果各镀层之间的结合力良好,化学镀Ni-P层、电镀Cu层和多孔Zn-Ni层的耐蚀性能均优于镁锂合金基体,该组合镀层的协同作用可以有效地保护镁锂合金基体,提高其耐蚀性。结论最外层多孔Zn-Ni合金镀层主要由Ni2Zn11、NiO、NiS组成,其红外发射率为0.90,电阻率小于0.01 m?/cm。这表明多孔结构可以有效提高金属合金镀层的红外发射率,并保持合金镀层的高导电性。  相似文献   

11.
Compositionally modulated multilayer (CMM) Zn-Ni deposits were electrodeposited from single acidic bath (pH = 4.7) by using a potentiostatic sequence. The Zn and Ni composition in the alloy was tailored as a function of distance from the steel substrate. X-ray diffraction studies of the deposit showed the presence of γ-phase with a composition of Ni5Zn21. The corrosion properties of modulated multilayer coatings were studied in 5% NaCl solution using electrochemical corrosion techniques. The polarization resistance of the deposits varied as a function of Ni content between 1700 and 3440 Ω. CMM Zn-Ni with 20 wt% Ni exposed in ASTM B117 salt spray test did not show any red rust formation after 400 h.  相似文献   

12.
As an effort to increase the corrosion resistance of conventional monolayer Zn-Ni alloy coating, the multilayer Zn-Ni alloy coating have been done electrolytically on mild steel (MS), using gelatin and glycerol as additives. Multilayered, or more correctly composition modulated multilayer alloy (CMMA) coatings have been developed using square current pulse. Successive layers of alloys, in nanometric scale having alternately changing composition were fabricated by making the cathode current to cycle between two values, called cyclic cathode current densities (CCCD’s). The coatings having different configuration, in terms of composition and thicknesses of individual layers were developed and their corrosion performances were evaluated by electrochemical methods. The corrosion rate (CR)’s were found to decrease drastically with progressive increase in number of layers (up to 300 layers), and then increased. The coating configurations have been optimized for best protection against corrosion. The CMMA Zn-Ni coating having 300 layers was found to be about 37 times more corrosion resistant than corresponding monolayer alloy, developed from same bath for same time. High protection efficacy of the coatings were attributed to alternate layers of alloys having different surface structure and composition, supported by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) study, respectively. Optimization procedure has been explained, and results are discussed.  相似文献   

13.
The corrosion behaviour of electrodeposited Zn, Zn-Co, Zn-Fe and Zn-Ni coatings without and with Chromate films was studied in alkaline solutions and mortar probes. DC polarization measurements were used for electrochemical characterization of the investigated samples, while AES XPS techniques were applied for the Chromate film analysis. The stability of the anodically formed oxide films on unchromated coatings appeared to be dependent on their composition. The oxide layer stability in Cl free NaOH solution was higher for Zn-Ni and Zn-Co alloys, while introduction of Cl ions caused lowering of stability especially for Zn-Ni coating. The detected corrosion current values implied that unchromated Zn alloys did not possess higher corrosion resistance in alkaline media containing Cl ions. Meanwhile, chromated Zn-Co coatings exhibited the beneficial effect of alloying for corrosion in alkaline solutions and concrete. A higher concentration of Cr(Vl) compounds in the passive Chromate layer of the alloyed sample may be the reason for its superior corrosion resistance.  相似文献   

14.
The corrosion behaviour of electrodeposited zinc-nickel (Zn-Ni) alloy coatings has been studied in aqueous chloride environments. The corrosion rates of detached zinc alloys containing up to 25% Ni by weight were determined using linear polarisation techniques. The corrosion rate of Zn-Ni alloys was found to decrease with increasing Ni content over the compositional range studied. Galvanic corrosion measurements have indicated, however, that Zn-Ni alloy coatings become less sacrificial toward steel as the Ni content is increased. These results are used to interpret the corrosion behaviour of electroplated steel in a neutral salt fog environment.  相似文献   

15.
The aim of this research work is to optimize the plating conditions during electrodeposition of Zn-Ni alloys. Electrodeposits of Zn-Ni alloys have been synthesized from sulphate bath using cyclic voltammetry and chronopotentiometry techniques under different conditions. X-ray diffraction measurements reveal that the alloys consisted of <gamma>-Ni5Zn21 and pure zinc phases. The composition and morphology of the deposits have been also studied and discussed. The surface analyses indicate that the deposition took place with the formation of Zn-Ni alloy coatings, containing at least 10 wt.% Ni. In order to obtain better barrier properties and corrosion resistance, coated steel samples have been immersed in 3% NaCl solution and studied using potentiodynamic stripping and electrochemical impedance spectroscopy. The process of dezincification is reduced when the coated steel is electroplated by chronopotentiometry (5 mA and 10 mA). In addition, these samples exhibit an improved morphology and fine grain size as compared with deposits electroplated by cyclic voltammetry.  相似文献   

16.
研究了Zn-Ni合金镀液中主盐的组成、电镀工艺参数对Zn-Ni合金镀层中的含镍量及镀层性能的影响,结果表明,电流密度是影响Zn-Ni合金镀层中含镍量的主要因素.在电沉积过程中,利用计算机控制电流输出的电镀电源,通过调整施镀电流密度,制备出了由2种组成不同的Zn-Ni合金薄层交替叠加而形成的Zn-Ni合金多层镀层.SEM表面及断面显微分析结果表明:Zn-Ni合金多层镀层表面无缺陷,断面呈清晰的层状结构.   相似文献   

17.
The formation, composition, and structure of electrodeposited zinc-nickel alloys were investigated. It has been shown that both anomalous and normal codeposition of zinc and nickel can be realized by changing the bath composition and deposition conditions, with the nickel content in the resultant deposit being varied in a wide range (from 2 to 90 at.%). It has been also shown that the ammonical diphosphate electrolyte allows deposition of Zn-Ni coatings with a homogeneous phase structure (Ni5Zn21 and Ni3Zn22 intermetallides, a solid solution of Zn in Ni, or a solid solution of Ni in Ni5Zn21), whereas the weak acid chloride electrolyte produces two-phase coatings consisting of Ni5Zn21 with the admixture of polycrystalline Zn or Ni. The Zn-Ni coating with a nickel content of 19 at.% consisting of Ni5Zn21 intermetallic phase exhibits the highest corrosion resistance.  相似文献   

18.
Nickel–iron alloys with a compositional range of 24–80?wt-% iron were electrodeposited on a copper substrate from a sulphate-based bath and using a stirring rate of 100?rev?min?1. The effect of applied current density and Ni2+/Fe2+ metal ion ratio of plating bath on the properties of alloy coatings was examined. Crystal structure and grain size of Ni–Fe alloy coatings were investigated using X-ray diffraction technique. Field emission scanning electron microscopy and energy dispersive X-ray spectroscopy were used to analyse the surface morphology and chemical composition of coatings. Microhardness test was applied to evaluate the hardness of the coatings. Finally, the electrochemical behaviour of the Ni–Fe alloy coatings was studied by a polarisation test in 10?wt-% H2SO4 solution. Results revealed that current density and plating bath composition had a strong effect on the characteristics of coatings. As the iron content of alloys produced increased, their corrosion resistance improved with the best corrosion resistivity being achieved at a metal ion ratio of 0.5 and applied current density of 2.5?A?dm?2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号