首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
研究了挤压态镁合金在280~400℃和1×10-4~1×10-1s-1的超塑性流变行为。结果表明,热挤压可以明显减小AZ91D镁合金的晶粒尺寸;在340℃、1×10-4s-1的变形条件下,其最大伸长率达到487%,应变速率敏感指数m可达0.51。挤压态AZ91D镁合金超塑性变形的主要机制为晶界滑移机制。通过光镜和扫描电镜(SEM)观察了AZ91D镁合金超塑性变形前后的微观组织和断口形貌及其拉伸断裂机制。  相似文献   

2.
大晶粒AZ91镁合金的超塑变形行为   总被引:3,自引:0,他引:3  
研究了晶粒尺寸为 85 μm的大晶粒AZ91镁合金在高温下的超塑拉伸变形行为。结果表明 ,大晶粒AZ91合金能在高温下获得超塑性。在 35 0℃下 ,应变速率为 3× 10 - 4s- 1 拉伸时 ,最大伸长率达2 2 8%。 30 0℃下 4 0 %的预应变可以改善合金在更高温度下的超塑性能。在超塑拉伸变形初期 ,动态再结晶细化了合金的晶粒 ,呈现出细晶超塑的特征 ;随着应变量的增加 ,合金的晶粒长大趋势不明显。大晶粒AZ91合金的超塑性变形机制是晶界滑移控制下的孔洞连接协调机制。  相似文献   

3.
试验研究了供应态2B70铝合金经普通退火处理后在不同变形工艺下的超塑性变化规律.结果表明:采用3.3×10-4 s-1的初始应变速率,在360℃~490℃的拉伸温度范围内2B70铝合金具有一定的超塑性.450℃为合金的最佳超塑性拉伸温度,3.3×10-4 s-1为最佳初始应变速率,在最佳超塑性条件下合金的最大伸长率达到193.3%,流动应力为13.94 MPa.在超塑性拉伸过程中,由于不断发生动态回复及再结晶,晶粒趋于明显细化和等轴化.合金的超塑性变形是以晶界滑移为主的变形机制,在较低拉伸温度及较高初始应变速率下晶界滑移痕迹较少,表现出明显的晶间断裂特征.  相似文献   

4.
对初始晶粒度为66μm的轧制板材在不同温度和不同变形速率下进行超塑性拉伸实验,研究Mg-Gd-Y-Zr合金粗晶热轧板材的超塑性行为与微结构特征。在温度为435℃、应变速率为5×10-4s-1的变形条件下获得的最大伸长率为380%,应变速率敏感系数为0.56。合金的表观变形激活能高于镁的晶界扩散激活能或晶格扩散激活能;合金的超塑性变形机制为晶格扩散控制的位错协调晶界滑动机制。微结构分析结果表明:第二相钉轧晶界,较软的不规则块状的β相承受了部分塑性变形。  相似文献   

5.
肖代红  陈康华  宋旼 《轻金属》2007,(11):50-54
研究了Al-5.3Cu-0.8Mg-0.6Ag合金板在温度400℃~520℃以及应变速率1×10-4s-1~1×10-1s-1下的超塑性变形能力及其变形机制。结果显示,轧制态的Al-5.3Cu-0.8Mg-0.6Ag合金在500℃及应变速率5×10-4s-1时的最大延伸率为320%,应变速率敏感系数达到0.58。高应变速率下超塑性变形过程中主要机制为晶界滑动,协调机制则是空洞的形核长大与断裂。  相似文献   

6.
工业态AZ31镁合金的超塑性变形行为   总被引:33,自引:2,他引:33  
研究了工业态AZ31镁合金在温度 6 2 3~ 72 3K和应变速率 1× 10 -5~ 1× 10 -3 s-1范围内的超塑性变形行为。结果表明 ,工业态AZ31镁合金表现出良好的超塑性 ,其最高断裂延伸率达到 314%,应变速率敏感指数达 0 .4。显微组织观察和断口分析表明 ,工业态AZ31镁合金超塑变形主要由晶界滑动机制所控制 ,同时 ,动态再结晶也是合金超塑变形的一种协同机制。  相似文献   

7.
AZ31B镁合金板材超塑性变形与断裂机理研究   总被引:3,自引:0,他引:3  
研究了工业态热轧AZ31B镁合金板材的超塑性及其变形机制,在应变温度为723K,应变速率为1×10-3s-1的试验条件下,其最大断裂伸长率达到216%,应变速率敏感性指数达0.36。研究结果表明:晶界滑动(GBS)是工业态热轧AZ31B镁合金超塑性的主要变形机制,变形初期有动态再结晶发生,断裂是由晶界处形成的空洞不断长大、连接而引起的。  相似文献   

8.
通过拉伸实验研究了供应态LC9铝合金经退火处理后的超塑性变形特性。在初始应变速率3.3×10-4s-1,拉伸温度410~510℃时,合金均具有超塑性,平均伸长率为106%~181%。最佳超塑性温度为450℃,最佳初始应变速率为3.3×10-4s-1,在此温度和应变速率条件下,合金平均伸长率达到181%,m值为0.41,流动应力仅为14.4MPa。显微组织和断口观察表明,在超塑性变形过程中发生了明显的动态再结晶,再结晶晶粒等轴、细小、均匀。空洞在晶界处形核、长大,最后连接,导致试样断裂。  相似文献   

9.
在温度450~520℃和1.67×10~(-3)~1.00×10~(-1)s~(-1)。初始应变速率条件下对Al-Mg-Sc-Zr合金冷轧板材进行拉伸实验,研究该合金的超塑性流变行为,探讨其超塑性变形机理。结果表明:随着变形温度的升高,伸长率先增加后减小,在500℃和初始应变速率6.67×10~(-3)s~(-1)条件下获得的最大伸长率为740%。合金的应变速率敏感因子为0.40,激活能为101 kJ/mol;在超塑性变形过程中,合金组织发生明显的动态再结晶,使原始纤维状晶粒等轴化;Al_3(Sc,Zr)粒子可有效钉扎晶界,抑制晶粒长大;超塑性变形过程的主要变形机制为晶界滑移,协调机制为晶界扩散控制的位错蠕变。  相似文献   

10.
通过拉伸实验研究了供应态LC9铝合金经退火处理后的超塑性变形特性.在初始应变速率3.3×10-4 s-1,拉伸温度410~510℃时,合金均具有超塑性,平均伸长率为106%~181%.最佳超塑性温度为450℃,最佳初始应变速率为3.3×10-4 s-1,在此温度和应变速率条件下,合金平均伸长率达到181%,m值为0.41,流动应力仅为14.4MPa.显微组织和断口观察表明,在超塑性变形过程中发生了明显的动态再结晶,再结晶晶粒等轴、细小、均匀.空洞在晶界处形核、长大,最后连接,导致试样断裂.  相似文献   

11.
细晶1420铝锂合金超塑性能试验研究   总被引:3,自引:0,他引:3  
文章以采用双级时效制度和转向轧制工艺制备的细晶1420铝锂合金为研究对象,通过恒应变速率超塑拉伸试验,研究了合金的单轴超塑拉伸性能。结果表明,在460℃~520℃温度条件下和1×10-4s-1~5×10-3s-1应变速率范围内,细晶1420铝锂合金表现出良好的超塑性,在温度460℃、应变速率1×10-4s-1条件下,延伸率达到650%。利用光学显微镜和透射电镜等检测手段,对超塑变形后材料的组织进行了观察和分析。  相似文献   

12.
研究了应变速率变化时粗晶Ti-15-3板材在β相区的超塑性。第一段的应变速率分别为1×10-1和1×10-2 s-1,应变量为0.2~0.6。在第二段的应变速率为3×10-4 s-1时,获得345%最大伸长率,比在恒应变速率下的伸长率大93%。而两段应变速率下,应变速率敏感系数m值无太大变化。研究了第一段变形结束时动态再结晶晶粒大小和后续超塑性的关系。  相似文献   

13.
铸态AZ31镁合金的超塑性性能及流变应力   总被引:3,自引:0,他引:3  
通过连铸AZ31镁合金的单向拉伸实验,研究了该合金的超塑性变形性能及不同拉伸变形条件下的流变应力。结果表明,在温度为300℃~450℃,应变速率.ε为4.25×10-4s-1的情况下,连铸ZA31镁合金表现出超塑性。在温度为400℃,应变速率.ε为4.25×10-4s-1时,延伸率增加了200%,具有较好的超塑性性能。用光学显微镜观察变形前后拉伸试样的微观组织发现:试样的初始晶粒尺寸约为15μm,在变形之后颈缩区域的晶粒长大现象不是很明显,晶粒沿着变形方向有所伸长,但晶粒形状基本保持为等轴状。  相似文献   

14.
研究了原始晶粒尺寸为220 (m的正化学计量比单相Ni-50Al金属间化合物的高温变形行为及组织演变规律.结果表明,该合金在温度1000~1100 ℃,应变速率7.5×10~(-4)~1×10~(-3) s~(-1)范围内具有良好的高温塑性变形能力;在1075 ℃,应变速率为8.75×10~(-4) s~(-1)时,最大延伸率可达139%.金相显微分析表明,原始大晶粒组织经高温塑性变形后显著细化;EBSD与 TEM分析表明,变形过程中小角度晶界持续产生,较小角度晶界向较大角度晶界不断演变,最终导致晶粒显著细化.显微结构综合分析表明,大晶粒Ni-50Al合金的高温塑性变形是由位错的交滑移与攀移等交互作用产生的连续动态回复和再结晶导致的.  相似文献   

15.
采用熔铸、大变形轧制(加工率大于92%)和硝酸盐浴退火方法制备Mg-7.83%Li 合金与Mg-8.42%Li合金细晶板材,研究合金的超塑性、显微组织、空洞与断裂形貌和变形机制.计算α相(5.7%Li)和β相(11%Li)的扩散系数和Gibbs自由能,讨论573 K时超塑性晶粒长大的原因.结果表明:Mg-7.83Li和Mg-8.42Li合金分别获得850%和920%的最大超塑性;Mg-7.83Li合金在573 K时发生了显著的超塑性晶粒长大;在573 K和1.67×10~(-3) s~(-1)条件下制备的Mg-8.42Li合金中的空洞较少,且在变形区中随机而孤立地分布.断裂形貌观察发现Mg-8.42Li合金在573 K和5×10~(-4) s~(-1)条件下发生穿晶断裂;Mg-7.83Li合金在573 K和1.67×10~(-3) s~(-1)条件下发生沿晶界韧窝断裂.归一化实验数据与考虑位错数量的变形机制图对比表明合金超塑性变形机制为晶格扩散控制的位错调节的晶界滑移.  相似文献   

16.
通过高温拉伸试验研究Ti-6Al-4V(TC4)合金激光焊缝的纵向超塑性变形行为,采用扫描电镜观察超塑性变形前后焊缝的显微组织.结果表明:TC4钛合金激光焊缝具有良好的超塑性变形能力,在900 ℃、10~(-3) s~(-1)工艺条件下伸长率达到最大值397%;在超塑性变形过程中,原始焊缝的针状马氏体首先转变为片层状的α+β组织,而后片层组织发生再结晶等轴化;随着变形温度升高或应变速率降低,等轴化程度增大.  相似文献   

17.
The mechanical properties and deformation mechanism of semi-continuously casting and as-extruded AZ70 magnesium alloys in a wide range of grain sizes(from 14 to 103μm)were investigated at 653 K and 1×10-3s -1.It is discovered that with reducing grain size,flow stress is weakened and plasticity is improved and even superplasticity exhibits.SEM and OM were used to clarify the deformation mechanism.It is suggested that dynamic recrystallization(DRX)is the coordination deformation mechanism of grain boundary sliding(GBS)for coarse grain,and cavity and intracrystalline slip are the coordination deformation mechanisms of GBS for fine grain.  相似文献   

18.
在Gleeble-3500热模拟试验机上对AZ31B镁合金薄板(0.6 mm)拉伸试样在100~350℃的温度范围和1×10-1~1×10-3s-1的应变速率范围内进行了的单向拉伸实验,根据实验结果对AZ31B镁合金薄板的力学性能进行了分析.结果表明:AZ31B镁合金薄板在较低变形温度100~150℃时,应变速率对流动应力的影响不大;相比之下应变速率对AZ31B镁合金的断裂伸长率却有一定的影响,提高应变速率会降低材料的伸长率;在较高变形温度(200℃以上)时,应变速率对流动应力的影响比较明显,表现出显著的应变速率敏感性.  相似文献   

19.
搅拌摩擦加工AZ31镁合金的超塑性   总被引:1,自引:0,他引:1  
对搅拌摩擦加工AZ31镁合金的微观组织和拉伸力学行为进行了研究。结果表明,通过搅拌摩擦加工,热轧AZ31板材的平均晶粒尺寸由92.0μm细化到11.4μm。搅拌摩擦加工板材在高温下具有优异的塑性,伸长率在温度为723K和应变速率为5×10-4s-1的条件下达到1050%。该材料还具有高应变速率超塑性,在723K和1×10-2s-1的条件下伸长率达到268%。在相同实验条件下,母材由于晶粒尺寸粗大,没有显示出超塑性。  相似文献   

20.
The superplasticity of high strength superhard A1 alloy LC4 was improved to a great extent by modified thermomechanical treatment.Its maximum elongation may be up to 2100% un- der deformation at initial strain rate of 8.33×10~(-4) S~(-1) at 510℃.Observations of the microstructure changes revealed that with the increase of the deformation,the grain grows and the alloy exhibits strain hardening.The excellent elongation of the alloy seems due to the in- crease of grain stability under deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号