首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural and dynamical properties of liquid Al91Li9 and Al91Li9M3 (M = Cu, Mg, Si) alloys are investigated by means of ab initio molecular dynamic simulation. Pair distribution function analysis suggests that the atomic distances of Li–Li and Al–Li decrease after addition of alloying elements. The additive Cu and Si are manifested surrounded by Al and Li and hardly meet each other owing to the effects of atom size and their negative mixing enthalpy with Li. The topological environments of Al and Li in Al91Li9 are changed significantly by adding minor alloying elements. The diffusion of Al and Li is hindered by alloying elements, among which Cu and Si play more significant role. Furthermore, the metalloid additive Si illustrates different effects from the metallic additive Cu and Mg on the diffusivity of Al91Li9 liquid alloys.  相似文献   

2.
《Acta Materialia》1999,47(14):3841-3853
A complete and detailed analysis of the microstructural development during ageing in an 8090 (Al–2.3Li–1.2Cu–1Mg–0.1Zr) alloy, an 8090/20 wt% SiCp MMC, an Al–1.5Li–Cu–Mg MMC and an Al–Cu–Mg MMC (all with similar Cu and Mg contents) has been performed. Volume fractions of all precipitates relevant for precipitation strengthening of the alloys (δ′ phase, S′ phase and GPB zones) have been determined using a recently derived method based on differential scanning calorimetry (DSC). The volume fractions have subsequently been successfully fitted using a novel model for transformation kinetics. The sizes of these precipitates have been analysed using newly derived expressions consistent with the latter model. As a result of dislocation generation around misfitting SiC particles the volume fractions of both GPB zones and S′ phase depend strongly on the presence of these particles. Also the amount of Li present in the alloys influences the volume fractions of the phases significantly. The sizes of S′ are similar for the four alloys.  相似文献   

3.
《Acta Materialia》2001,49(14):2671-2678
Trace elements can have a significant effect on the processing and properties of aluminium alloys, including sintered alloys. As little as 0.07 wt% (100 ppm) lead, tin or indium promotes sintering in an Al–Zn–Mg–Cu alloy produced from mixed elemental powders. This is a liquid phase sintering system and thin liquid films form uniformly throughout the alloy in the presence of the trace elements, but liquid pools develop in their absence. Analytical transmission electron microscopy indicates that the trace elements are confined to the interparticle and grain boundary regions. The sintering enhancement is attributed to the segregation of the microalloying addition to the liquid–vapour interface. Because the microalloying elements have a low surface tension, they lower the effective surface tension of the liquid. This reduces the wetting angle and extends the spreading of the liquid through the matrix. An improvement in sintering results.  相似文献   

4.
Microalloying elements play a crucial role in mechanical properties and phase stability of metallic alloys. In this work, we employ first-principles calculations and atomic-scale high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) to find promising microalloying elements that will improve the stability and properties of β"/Al interface and β" phase in Al-Mg-Si alloys. First, we define a substitution energy for evaluating the stability of β" phase and β"/Al interface with microalloying elements doped. Then, experiments of HAADF-STEM imaging are carried out to verify the calculational results. Next, using the most stable structures doped with microalloying elements, the mechanical properties of the β" bulk and the β"/Al interface were calculated and analyzed. At last, we have figured out the effects of all considered microalloying elements and obtained a rule that the stable occupancy of solute atoms is related to their own radius and the radius of Mg, Si, and Al. These findings will provide some theoretical basis for future microalloying strategies of Al-Mg-Si alloys.  相似文献   

5.
《Acta Materialia》2001,49(5):913-920
We have investigated the origin of the initial rapid hardening of an Al–1.3 at.% Mg–1.7 at.% Cu alloy by coincidence Doppler broadening of positron annihilation radiation and positron lifetime spectroscopy. Quenched-in vacancies are bound to Mg atoms rather than Cu atoms initially and the vacancy–Mg complexes easily migrate to vacancy sinks at 150°C. Vacancy–Mg–Cu complexes form during the initial 1 min aging at vacancy sinks, meanwhile vacancy density decreases rapidly. These results support that the dislocation–solute interaction is the origin of the initial rapid hardening.  相似文献   

6.
A series of low-density, multiprincipal component alloys containing high concentrations of Al, Mg, Li, Zn, Cu and/or Sn was designed using a strategy based on high-entropy alloys (HEAs). The alloys were prepared by induction melting under high-purity argon atmosphere, and the resulting microstructures were characterized in the as-cast condition. The resulting microstructures are multiphase and complex and contain significant volume fractions of disordered solutions and intermetallic compounds. By analyzing the atomic size difference, enthalpy of mixing, entropy of mixing, electronegativity difference, and valence electron concentration among the constituent elements, modified phase formation rules are developed for low-density multiprincipal component alloys that are more restrictive than previously established limits based on more frequently studied HEAs comprising mostly transition metals. It is concluded that disordered solid solution phases are generally less stable than competing ordered compounds when formulated from low-density elements including Al, Mg, and Li.  相似文献   

7.
Al?high Si alloys were designed by the addition of Cu or Mg alloying elements to improve the mechanical properties. It is found that the addition of 1 wt.% Cu or 1 wt.% Mg as strengthening elements significantly improves the tensile strength by 27.2% and 24.5%, respectively. This phenomenon is attributed to the formation of uniformly dispersed fine particles (Al2Cu and Mg2Si secondary phases) in the Al matrix during hot press sintering of the rapidly solidified (gas atomization) powder. The thermal conductivity of the Al?50Si alloys is reduced with the addition of Cu or Mg, by only 7.3% and 6.8%, respectively. Therefore, the strength of the Al?50Si alloys is enhanced while maintaining their excellent thermo-physical properties by adding 1% Cu(Mg).  相似文献   

8.
Abstract

The quench sensitivity of Al–Si–Mg (D357 unmodified and Sr modified), and Al–Si–Mg–-Cu (354 and 319 Sr modified) cast alloys was investigated using a fluidised bed (FB). The average cooling rate of castings in the fluidised bed is lower than those quenched in water; the cooling rate first increases to a certain maximum and then decreases during quenching. The change in the cooling rate during quenching in water was more drastic, where the cooling rate varied from 0 to ?80 K s?1 in less than 8 s, as compared with those quenched in FB, where the cooling rate varied from 0 to ?14 K s?1 in 18 s. The FB quenching resulted in the formation of several metastable phases in Al–Si–Mg–Cu alloys; in contrast, no such transformation was observed during water quenching. The T4 yield strength of the FB quenched alloys was greater than water quenched alloys owing to the formation of a greater volume fraction of metastable phases in the FB quenched alloys. The tensile properties of T6 treated alloys show that Al–Si–Mg alloys (both unmodified and Sr modified) are more quench sensitive than Al–Si–Mg–Cu alloys. The high quench sensitivity of the Al–Si–Mg alloys is because GP zones are not formed, whereas GP zones are formed during quenching of the Al–Si–Mg–Cu alloys as predicted by time temperature transformation and continuous cooling transformation) diagrams.  相似文献   

9.
The influence of different alloying elements on the lattice parameters and elastic properties of Mg solid solution has been studied using first-principles calculations within the generalized gradient approximation. The solute atoms employed herein are Al, Ba, Ca, Cu, Ge, K, Li, Ni, Pb, Si, Y and Zn. A supercell consisting of 35 atoms of Mg and one solute atom is used in the current calculations. A good agreement between calculated and available experimental data is obtained. Lattice parameters of Mg–X alloys are found to be dependent on the atomic radii of the solute atoms. A correlation between the bulk modulus of Mg–X alloys and the nearest-neighbor distance between Mg and X is shown. Addition of solute atoms belonging to the s-block and p-block of the periodic table results in a lower bulk moduli than d-block elements. A strong dependence of the elastic modulus of Mg–X alloys on the elastic properties of the solute atoms is also observed. Using the bulk modulus/shear modulus ratio (B/G), the change in the ductility of Mg due to the addition of the solute atom is briefly described. Linear regression coefficients for the elastic constants of each of the alloys are obtained as a tool for predicting the trend in the elastic properties of Mg as a function of concentration of the solute atoms.  相似文献   

10.
EFFECTSOFCuandMgONMICROSTRUCTUREANDPROPERTIESOF-Al(3-4Wt%)LiALLOYSC.G.Jiao;G.F.YuandM.G.Yan(InstituteofAeronauticalMaterials,...  相似文献   

11.
《Acta Materialia》2007,55(17):5867-5872
Previous efforts to understand solute–vacancy binding in aluminum alloys have been hampered by a scarcity of reliable, quantitative experimental measurements. Here, we report a large database of solute–vacancy binding energies determined from first-principles density functional calculations. The calculated binding energies agree well with accurate measurements where available, and provide an accurate predictor of solute–vacancy binding in other systems. We find: (i) some common solutes in commercial Al alloys (e.g., Cu and Mg) possess either very weak (Cu), or even repulsive (Mg), binding energies. Hence, we assert that some previously reported large binding energies for these solutes are erroneous. (ii) Large binding energies are found for Sn, Cd and In, confirming the proposed mechanism for the reduced natural aging in Al–Cu alloys containing microalloying additions of these solutes. (iii) In addition, we predict that similar reduction in natural aging should occur with additions of Si, Ge and Au. (iv) Even larger binding energies are found for other solutes (e.g., Pb, Bi, Sr, Ba), but these solutes possess essentially no solubility in Al. (v) We have explored the physical effects controlling solute–vacancy binding in Al. We find that there is a strong correlation between binding energy and solute size, with larger solute atoms possessing a stronger binding with vacancies. (vi) Most transition-metal 3d solutes do not bind strongly with vacancies, and some are even energetically strongly repelled from vacancies, particularly for the early 3d solutes, Ti and V.  相似文献   

12.
采用Monte-Carlo方法模拟了时效初期Al-4.0Cu-0.3Mg-(0.4Ag)-(0.2Sc)合金的原子分布.研究结果表明:在时效过程中含微量钪的Al-Cu-Mg合金中镁原子逐步向钪原子周围偏聚,而铜原子并没有向钪原子周围聚集的倾向,时效初期出现了大量的Mg/Sc原子团簇及Mg/Sc/空位复合体;微量钪的存在促进了镁原子团簇化,但抑制了铜原子的团簇化;而含微量银的合金中镁原子向银原子周围偏聚的倾向比铜原子大得多,时效初期出现了大量的Ag/Mg原子团;"Sc/空位"机制是微量钪影响Al-Cu-Mg合金时效初期原子分布与形态的关键所在.  相似文献   

13.
《Acta Materialia》1999,47(5):1537-1548
The solute clusters and the metastable precipitates in aged Al–Mg–Si alloys have been characterized by a three-dimensional atom probe (3DAP) and transmission electron microscopy (TEM). After long-term natural aging, Mg–Si co-clusters have been detected in addition to separate Si and Mg atom clusters. The particle density of β″ after 10 h artificial aging at 175°C varies depending on pre-aging conditions, i.e. pre-aging at 70°C increases the number density of the β″ precipitates, whereas natural aging reduces it. This suggests that the spherical GP zones formed at 70°C serve as nucleation sites for the β″ in the subsequent artificial aging, whereas co-clusters formed at room temperature do not. Atom probe analysis results have revealed that the Mg:Si ratios of the GP zones and the β″ precipitates in the alloy with excess amount of Si are 1:1, whereas those in the Al–Mg2Si quasi-binary alloy are 2:1. Based on these results, the characteristic two-step age-hardening behavior in Al–Mg–Si alloys is discussed.  相似文献   

14.
The corrosion resistance (stress corrosion cracking, exfoliation, intergranular corrosion) of a wide group of aluminum-lithium alloys has been studied under atmospheric conditions with various corrosion environments. Corrosion behavior of experimental and commercial batches of aluminum-lithium alloys has been established as a function of the chemical composition of the alloys and ratio of Cu/Mg, Li/Cu + Mg. Under atmospheric conditions, the best corrosion properties are those of an alloy with a Cu/Mg ratio of 0.5 and a ration of Li/Cu + Mg of 0.96. It has been proved that a decrease in Li/Cu + Mg to 0.56–0.76 leads to impairment of corrosion properties. Accelerated corrosion tests result in the same conclusions.  相似文献   

15.
16.
The SiC particle reinforced aluminum alloy has been developed for various machine parts. Aluminum welded machine parts often require welded joints composed of dissimilar alloys. In the present study, electron beam weldability of dissimilar joints was investigated on different combinations of aluminum alloys of 10 mm thickness. The main alloy is 10% SiC particle reinforced Al–Si aluminum alloy. Combination wrought alloys are Al–Si, Al–Mg, Al–Mg–Si and Al–Zn–Mg–Cu alloys. The electron beam machine is a 6 kW high voltage type. The joint groove is of square butt without filler metal.

In the case of SiC reinforced alloy/Al–Si and Al–Mg, joints, weldability was poor because some weld imperfections were recognized such as arcing and other defects. In the case of SiC reinforced alloy/Al–Mg–Si, Al–Zn–Mg–Cu, the cracking sensitivity is low while some small porosity was recognized. Tensile strength became about 150 MPa such as SiC reinforced alloy. Impact values of the SiC reinforced alloy/Al–Mg–Si joint were recovered through 2160 h room temperature ageing. Micro segregation of the Si element was recognized for the SiC reinforced alloy/Al–Mg–Si joint by electron probe microanalyser analysis.  相似文献   

17.
The impact of the Cu/Li ratio on the sequence and kinetics of solid-state precipitation is studied for two recently developed Al–Cu–Li–Mg–Ag alloys: AA2198 and AA2196. A quantitative evaluation of the alloy microstructure is carried out using small-angle synchrotron X-ray and neutron scattering, conventional and aberration-corrected (scanning) transmission electron microscopy and differential scanning calorimetry. It is shown that small modifications to alloy chemistry profoundly change the phases formed during natural ageing: Cu-rich clusters in the Li-lean alloy and the δ′(Al3Li) phase in the Li-rich alloy. Despite this difference in early ageing, the peak aged microstructures of the two alloys are similar, dominated by high-aspect-ratio T1 plates with a thickness of 1.3 nm and a diameter up to 50 nm. However, the incubation time for nucleation and saturation size after growth of the precipitates is found to be significantly different between the two alloys. Small amounts of other phases from the binary Al–Cu sequence are also observed. Mechanisms of formation of the T1 phase are discussed in view of these experimental results.  相似文献   

18.
The correlations among the corrosion behaviour, grain-boundary microchemistry, and Zn content in Al–Zn–Mg–Cu alloys were studied using stress corrosion cracking (SCC) and intergranular corrosion (IGC) tests, combined with scanning electron microscopy (SEM) and high-angle angular dark field scanning transmission electron microscopy (HAADF-STEM) microstructural examinations. The results showed that the tensile strength enhancement of high Zn-containing Al–Zn–Mg–Cu alloys was mainly attributed to the high density nano-scale matrix precipitates. The SCC plateau velocity for the alloy with 11.0 wt.% Zn was about an order of magnitude greater than that of the alloy with 7.9 wt.% Zn, which was mainly associated with Zn enrichment in grain boundary precipitates and wide precipitates-free zones. The SCC mechanisms of different Zn-containing alloys were discussed based on fracture features, grain-boundary microchemistry, and electrochemical properties.  相似文献   

19.
研究了Al-Cu-Li-(0.35Mg)-(0.2In)合金的拉伸性能、时效析出相类型及其分布。T6峰时效时,Al-Cu-Li合金的时效析出相为T1(Al2CuLi)和?? (Al2Cu)相。添加0.2%In时,T6态时效早期形成许多方块状的立方相Al5Cu6Li2,且随时间延长其尺寸保持稳定;同时,可促进? ?相析出;相应合金的时效响应加速,强度提高。同时添加In和Mg可抑制Al5Cu6Li2相析出,但促进T1相析出。In和Mg的复合微合金化效果小于2050铝锂合金中Ag和Mg的复合微合金化效果,因而In+Mg复合微合金化铝锂合金T6态强度低于Ag+Mg复合微合金化的2050铝锂合金。T8态时效时,时效前预变形产生的位错抑制了In元素单独添加和In+Mg复合添加的微合金化效果。  相似文献   

20.
Phases and microstructures of three high Zncontaining Al–Zn–Mg–Cu alloys were investigated by means of thermodynamic calculation method, optica microscopy(OM), scanning electron microscopy(SEM)energy dispersive spectroscopy(EDS), X-ray diffraction(XRD), and differential scanning calorimetry(DSC) analysis. The results indicate that similar dendritic network morphologies are found in these three Al–Zn–Mg–Cu alloys. The as-cast 7056 aluminum alloy consists of aluminum solid solution, coarse Al/Mg(Cu, Zn, Al)_2 eutectic phases, and fine intermetallic compounds g(MgZn_2). Both of as-cast 7095 and 7136 aluminum alloys involve a(Al)eutectic Al/Mg(Cu, Zn, Al)_2, intermetallic g(MgZn_2), and h(Al_2Cu). During homogenization at 450 °C, fine g(MgZn_2) can dissolve into matrix absolutely. After homogenization at 450 °C for 24 h, Mg(Cu, Zn, Al)_2 phase in 7136 alloy transforms into S(Al_2Cu Mg) while no change is found in 7056 and 7095 alloys. The thermodynamic calculation can be used to predict the phases in high Zncontaining Al–Zn–Mg–Cu alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号