首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
采用电沉积法把Sn、Co原子沉积在硬碳颗粒上得到Sn-Co-C复合负极材料,然后球磨。XRD分析表明复合粉体由Sn、Co2C、CoSn2和C组成。电子探针测试表明试样中Sn、Co、C原子分数分别为2.9145%,0.6921%,95.3879%。SEM观察显示,锡钴粒子尺寸为50~100nm,沉积在片状的硬碳颗粒上。试样与锂片组成模拟电池,首次放电比容量为551.5mAh/g,充电比容量为309.4mAh/g。循环50次后放电比容量仍保持在319.6mAh/g,充电比容量保持在281.6mAh/g。交流阻抗测试表明,在第一次放电后形成了固体电解质层膜,但循环一次后消失。  相似文献   

2.
通过原位复合法制备了PEO/LiClO4/SiO2聚电解质膜,采用TEM、XRD、交流阻抗法和充放电测试等研究了粒子的分布状态、聚合物电解质膜的结晶行为及组装成电池的充放电行为。结果表明,原位生成的SiO2粒子分布均匀,抑制了聚合物电解质的结晶,以此膜为电解质组装的全固态聚合物锂电池首次充电电压平台在4.2V左右,放电中值电压为3.6V,初始充电比容量为130mAh·g-1,50次循环后放电容量保持在84mAh·g-1。  相似文献   

3.
以超声波辅助沉淀法合成的纳米级球形FePO4·2H2O为原料,采用碳热还原法制备了复合金属掺杂的LiFePO4/C复合材料。通过X射线衍射(XRD),扫描电镜(SEM),恒电流充放电测试,循环伏安和交流阻抗测试表征了FePO4·2H2O和LiFePO4/C的物相、结构和电化学性能。结果表明,溶液浓度为0.1 mol/L时制备的FePO4·2H2O为分布均匀的纳米级球形颗粒。复合金属掺杂显著提高了LiFePO4的放电比容量,Ni和Nb复合掺杂的LiFePO4/C复合材料表现出了最佳的电化学性能,0.1 C倍率条件下首次放电容量158.8 mAh/g,1 C倍率下首次放电容量150.2 mAh/g,100次循环后容量保持率分别为98.30%和97.8%。Ni和Nb复合掺杂后提高了LiFePO4的锂离子扩散速率和电导率。  相似文献   

4.
采用溶胶-凝胶(sol-gel)法制备了颗粒较小(100~300nm)、分布均匀的尖晶石LiCoxMn2-xO4粉体,研究了不同掺杂水平对其结构及电化学性能的影响.结果表明,掺杂少量Co于LiMn2O4中并不改变材料的尖晶石结构;随着Co掺杂量增加,材料结构稳定性提高,极化降低,首次放电比容量逐渐减小,但充放电循环性能却明显改善;在低温(500℃)条件下退火6h后,LiCoxMn2-xO4粉体的放电比容量稍有增加,但对循环性能影响不大;在电流密度0.1mA/cm2和截止电压3.5~4.4V时,LiCo0.1Mn1.9O4粉体首次放电比容量达123mAh/g,20次循环后的稳定放电比容量为106mAh/g,具有较好的电化学性能.  相似文献   

5.
采用乙醇作为介质,FeCl3为氧化剂,对甲苯磺酸钠为掺杂剂,通过吡咯单体在钒酸锂表面的氧化聚合制备出了钒酸锂/聚吡咯(LiV3O8/PPy)复合材料。采用X-射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)对复合材料的结构与形貌进行表征。用恒流充放电测试、循环伏安(CV)和交流阻抗(EIS)等研究了聚吡咯包覆量对材料电化学性能的影响。结果表明:在钒酸锂表面均匀地包覆了一层厚度约10nm的聚吡咯,但并没有改变钒酸锂的晶型结构。当聚吡咯包覆量为6% 时,复合材料的电化学性能最好,在0.1C充放电倍率下,首次放电比容量为274mAh/g,循环100次后样品的放电比容量为239.4mAh/g,容量保持率为87.4%,而未包覆PPy的LiV3O8,其首次放电比容量为227.4mAh/g,循环100次后样品的放电比容量为160.1mAh/g,容量保持率仅为70.4%。LiV3O8/PPy复合正极材料的电化学性能得到了明显提高。  相似文献   

6.
采用高温裂解沥青、纳米硅和超声酸化处理的碳纳米管混合物,制备了锂离子电池负极复合材料硅/碳/碳纳米管。测试表明复合材料首次放电比容量高达1077 mAh/g,经过20个循环后可逆容量仍高达703 mAh/g。碳纳米管在碳基体中形成的网状结构使复合材料在循环过程中保持较好的稳定形貌。  相似文献   

7.
以柠檬酸、EDTA为络合剂,CoCl2、SnCl4为主盐的基础电解液,首先在基础电解液中加入硬碳制备Sn-Co-C复合电极材料.SEM观察表明获得的Sn-Co-C复合电极表面为镶嵌C小颗粒的菜花状结构,C物理夹杂在Sn-Co合金中,硬碳的引入使得电极材料的循环性能得到提高,首次充放电比容量分别为563.8和763.2 mA·h/g,而经过50次循环后充放电比容量分别为400.3和416.2 mA·h/g.然后,在基础电解液中加入甲酸,在聚苯乙烯微球(PS)为模板的辅助下制备孔状结构Sn-Co-C复合材料.获得的材料中Sn、Co、C的原子比分别为36.87%,2.82%,20.61%.充放电测试结果表明,孔状结构的Sn-Co-C电极表现出更好的循环性能,首次充放电比容量分别为821.1和946.6 mA·h/g,循环第50次后充放电比容量为401和457.6 mA·h/g,循环第60次后充放电比容量为349.7和401.5 mA·h/g,放电比容量达到400 mA·h/g以上.  相似文献   

8.
在三元液相体系中合成了球形Li2MnSiO4/C 复合正极材料,XRD、SEM和电化学性能测试对材料进行了表征。XRD测试表明Li2MnSiO4 具有正交结构,对应Pmn21空间群。SEM显示所得样品为小于1 μm的球形颗粒。将Li2MnSiO4/C 组装成扣式电池进行电化学测试的结果表明,在1.5~4.6 V,该样品的初始充电容量达310 mAh/g,放电容量高至 286 mAh/g,为理论比容量的85.9%;循环30 次后放电比容量为142 mAh/g。  相似文献   

9.
以从废旧锂离子电池中回收的钴锂为原料,Na2CO3为沉淀剂,聚乙二醇为分散剂,用共沉淀法制备了LiCoO2粉体.用DSC-TG对前躯体进行了差热分析.结果表明在煅烧过程中有3次明显的失重,650℃以后失重曲线趋于平直.用XRD对LiCoO2进行了晶相分析,在750℃制备的LiCoO2晶格常数为a=2.810 13×10-10m,c=14.034 6×10-10m,c/a=4.994 29,接近于标准LiCoO2的晶格常数.用BET分析了LiCoO2的粉体比表面积,其值为18.55 m2/g,并通过SEM观察到平均颗粒半径为70 nm左右,属于纳米级粉体.首次充电容量达146 mA/hg,放电容量达142 mAh/g,10次循环后仍保持96%的放电比容量.  相似文献   

10.
在三元液相体系中合成了球形Li_2MnSiO_4/C复合正极材料,XRD、SEM和电化学性能测试对材料进行了表征。XRD测试表明Li_2MnSiO_4具有正交结构,对应Pmn21空间群。SEM显示所得样品为小于1μm的球形颗粒。将Li_2MnSiO_4/C组装成扣式电池进行电化学测试的结果表明,在1.5~4.6 V,该样品的初始充电容量达310 mAh/g,放电容量高至286 mAh/g,为理论比容量的85.9%;循环30次后放电比容量为142 mAh/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号