首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金本构关系的BP神经网络模型   总被引:2,自引:0,他引:2  
利用THERMECMASTOR-Z型热力模拟试验机,在变形温度为780~1 080 ℃,应变速率为0.001~70.0 s-1条件下对Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金进行等温恒应变速率压缩试验,获得不同变形温度、不同应变速率和不同真应变下的流动应力数据.结合试验数据和神经网络知识,构建了采用BP算法的人工神经网络,训练结束后的神经网络即成为Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金的一个知识基的本构关系模型.利用所建立的BP网络模型对材料的流动应力进行了预测,发现预测值与试验数据吻合良好,说明该BP网络本构关系模型具有较高的精度,可用于指导Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金热加工工艺的制定.  相似文献   

2.
采用Gleeble-1500热模拟试验机进行等温恒应变速率热压缩实验,探究了Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金在应变速率为0.1~10 s-1、变形温度为1173~1323 K及最大变形量为60%条件下的高温塑性变形行为。探究了工艺参数对真应力-真应变曲线的影响,采用Arrhenuis模型构建了耦合应变的本构方程,基于动态材料模型及Babu流变失稳准则构建了热加工图。结果表明,Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金的流动应力随应变速率的减小及变形温度的增加呈下降并趋于平稳的趋势,且温度敏感性在低温区比高温区强。真应力-真应变曲线在变形温度1173~1273 K下的α+β相区呈现出动态再结晶特征,在变形温度为1323 K的β相区呈现出动态回复特征。建立的耦合应变的Arrhenuis本构方程具有较高的预测精度。利用Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金热加工图,确定了该合金最优塑性变形工艺参数为变形温度为1230~1323 K和应变速率为0.1~0.816 s-1。  相似文献   

3.
研究等轴组织TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si)合金在两相区980~800℃温度范围和应变速率0.001s-1,0.01s-1,0.1s-1条件下的热变形行为和微观组织演变。分析热力模拟参数对应力—应变曲线和微观组织演变的影响。并采用电子背散射衍射(EBSD)技术测试表征变形组织的晶界特征。研究结果表明:在980℃变形时,β相是主要变形相,发生了不连续动态再结晶;同时,α相经历了变形促进下的聚集粗化(低应变速率)和溶解(高应变速率)的过程,即α相含量和晶粒尺寸随着应变速率的加快而明显减小。在950~900℃,0.001s-1应变速率的条件下发生超塑性变形时,变形主要集中在软的β相,以及相界和晶界处。在850℃时,α相是主变形相,变形微观组织的演变机理是α相的连续动态再结晶,β相起晶界协调变形的作用。  相似文献   

4.
通过热压缩实验研究Ti-6Al-2Zr-1Mo-1V钛合金在变形温度为1000~1100°C,应变速率为10-3~1.0s-1的条件下的动态再结晶行为。结果表明:在变形温度高于1050°C、应变速率低于0.01s-1时,合金的动态再结晶机制以不连续动态再结晶为主;在变形温度低于1050°C、应变速率高于0.01s-1时,合金的动态再结晶机制以连续动态再结晶为主,同时存在少量的不连续动态再结晶。此外,降低应变速率和升高变形温度均能促进动态再结晶进程并使β变形晶粒细化。  相似文献   

5.
采用等温压缩试验研究不同原始组织对Ti-5Al-2Sn-2Zr-4Mo-4Cr合金流动应力、应变速率敏感性指数、应变硬化指数和表观变形激活能的影响。结果表明:原始组织为片层组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金具有更高的峰值应力和流动软化效应,当变形温度高于或等于810°C、应变速率为0.1~5.0 s-1时,原始组织为等轴组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金存在初始屈服现象。当应变为0.5~0.7、变形温度较低、应变速率为0.01 s-1时,原始组织为等轴组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金的应变速率敏感性指数值较大,这主要归因于其显微组织演变特征。隋着变形的进行,原始组织为片层组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金发生了α片层弯曲和动态球化现象,这使得其应变硬化指数变化显著。当应变为0.15~0.55时,原始组织为片层组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金的表观变形激活能更大。  相似文献   

6.
在Gleeble-1500热模拟机上对Ti-46.5Al-2.5V-1.0Cr-0.3Ni合金进行了热压缩实验,采用动态材料模型的加工图研究了其在1000~1200℃和0.001~1.0 s-1条件下的热变形行为.结果表明,Ti-46.5Al-2.5V-1.0Cr-0.3Ni合金在热变形时呈现两个微观机制不同的动态再结晶峰区,其中动态再结晶区域Ⅰ区:峰值效率为34%,峰值对应的温度和应变速率分别为1100℃和0.01 s-1;动态再结晶区域Ⅱ区:峰值效率为34%,峰值对应的温度和应变速率分别为1105℃和0.001 s-1.在温度低于1140℃、应变速率大于0.01 s-1范围内进行热加工时,由于热塑性变形过程中再结晶晶粒的不均匀长大,极易导致试样变形开裂.在温度1000~1130℃,变形速率大于0.02 s-1区域内,热压缩变形试样外表面剪切开裂趋势明显,易引起加工失稳.根据热加工图分析结果可知,TiAl合金热变形时应选择在动态再结晶Ⅰ区内进行.  相似文献   

7.
利用Thermecmastor-Z热模拟机进行Ti-6Al-2Zr-1Mo-1V钛合金在不同工艺参数(变形温度800,850,900,1000,1050°C,应变速率0.01,0.1,1,10s-1)条件下的热模拟压缩试验,研究变形温度和应变速率对Ti-6Al-2Zr-1Mo-1V钛合金流变应力的影响。以试验数据为基础,应用BP神经网络算法原理,建立该合金的高温流动应力与变形温度、应变和应变速率对应关系的高温本构关系预测模型。结果表明,运用神经网络方法建立的Ti-6Al-2Zr-1Mo-1V钛合金本构关系模型具有较高的预测精度,与试验结果吻合良好。此外,运用Visual Basic可视化编程语言设计并开发了具有神经网络功能的用户界面。  相似文献   

8.
Ti-46Al-2Cr-4Nb-Y合金的高温变形及加工图   总被引:1,自引:0,他引:1  
采用Gleeble-1500 热压缩模拟试验机进行压缩实验,在变形温度为1 100~1 250 ℃、应变速率为10-2~ 1 s-1的范围内,研究Ti-46Al-2Cr-4Nb-Y合金的高温变形行为,并基于动态材料模型,建立Ti-46Al-2Cr-4Nb-Y合金的加工图.结果表明:Ti-46Al-2Cr-4Nb-Y合金的高温变形流变应力对温度及应变速率敏感;流变应力随应变速率的增大而增大,随温度的升高而减小;动态再结晶是导致流变软化及稳态流变的主要原因;Ti-46Al-2Cr-4Nb-Y合金的安全热加工区域为温度1 200~1 230 ℃,应变速率10-2~10-1 s-1.  相似文献   

9.
利用激光熔化沉积技术制备Ti-6.5Al-3.5Mo-1.5Zr-0.3Si钛合金板材,并采用金相和扫描电镜对合金的宏观组织和微观组织进行表征,对室温拉伸性能进行研究。结果显示:宏观形貌由贯穿多个沉积层的大柱状晶组成;观察到宽条带和窄条带2种条带,宽条带由α板条和魏氏集束构成,窄条带由α板条和β转变组织构成,对条带的形成机理进行探讨。此外,还讨论由后续沉积层的沉积导致的热效应对组织演变的影响。室温拉伸测试显示,激光熔化沉积制备的Ti-6.5Al-3.5Mo-1.5Zr-0.3Si钛合金的强度达到锻件强度水平。  相似文献   

10.
通过高温压缩模拟实验,分析了Ti-6Al-2Zr-1Mo-1V合金在变形温度为850~1100℃,应变速率为0.01~10 s-1条件下的高温变形力学行为规律,并利用线性回归方法计算了不同温度范围内的应力指数n和变形激活能Q,获得了该合金高温变形力学行为计算模型.结果表明,Ti-6Al-2Zr-1Mo-1V合金对变形温度和应变速率非常敏感.在恒温时流动应力随应变速率的增大而增大,在恒应变速率时随变形温度的升高而降低.在850~950℃时,n、Q分别为7.0874和610.463 kJ/mol;而在950~1100℃时,n=4.7324,Q=238.030 kJ/mol,该预测模型的计算值与实测值之间的相对误差分别为6.341%和6.957%.  相似文献   

11.
采用Abaqus/explicit有限元软件,建立了二维刚塑性热力耦合有限元模型,对TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si)/TC17(Ti-4Mo-4Cr-5Al-2Sn-2Zr)异种钛合金线性摩擦焊接过程接头应力应变场进行了数值计算,探讨了焊接过程接头应力应变场的演变规律。结果表明:摩擦过程,界面热塑性金属在周期性拉压应力作用下,被挤出摩擦界面,在飞边处,轴向承受向上的拉应力和拉应变,界面方向受到向焊件内侧的压应力与压应变;顶锻阶段,应力值增大,应变值基本保持恒定。  相似文献   

12.
提出一种利用失稳变形区热力参数窗口条件和有限元模拟相结合来预测锻造失稳变形的方法,并以Ti-6.5Al-3.5Mo-1.5Zr-0.3Si 合金为例,将该钛合金的失稳变形区热力参数窗口条件集成到商业化的有限元模拟软件平台中。利用二次开发后的有限元模拟软件平台模拟了该钛合金在热压缩过程中失稳变形区的分布及其变化。模拟预测结果与实验结果吻合较好,说明所提出的失稳变形模拟与预测方法是可行和有效的。  相似文献   

13.
氮强化高锰奥氏体钢热变形行为研究   总被引:1,自引:0,他引:1  
利用Gleeble-3500热力模拟试验机在温度为1253~1423K,应变速率为0.1~10s-1的条件下对32Mn-7Cr-1Mo-0.3N奥氏体钢进行了热压缩变形试验,测定了其真应力-应变曲线,观察了变形后的组织.试验结果表明,流变应力和峰值应变随变形温度的降低和应变速率的提高而增大.真应变为0.6时,在1423K、应变速率在0.1~10s-1之间的试样均已发生完全动态再结晶;在1373K以下变形时,应变速率在0.1~10s-1之间,试样发生部分动态再结晶.动态再结晶晶粒尺寸随着变形温度的升高而增大,随着应变速率的升高而减小.32Mn-7Cr-1Mo-0.3N奥氏体钢的热变形激活能Q值为469.03kJ/mol,并获得热变形方程.  相似文献   

14.
在热模拟试验机上对铸态组织的阻燃钛合金(Ti-35V-15Cr-Si-C)进行了等温恒应变速率热压缩试验,温度范围为900~1200 ℃,应变速率范围为10-3~1 s-1,测试了其真应力-真应变曲线并对曲线上的应力σ突降进行了解释。基于动态材料模型建立了合金的热加工图,结合微观组织观察,确定了3个不同区域的高温变形机制:温度900~1030 ℃、应变速率小于0.1 s-1时,变形机制为动态回复和连续动态再结晶;温度大于1030 ℃、应变速率小于0.1 s-1时,功率耗散效率η出现峰值,除了动态回复和连续动态再结晶,还出现碳化物溶解现象;高应变速率(大致在0.01~1 s-1之间)区,是合金的变形失稳区域,较低温度时失稳机制为局部流动,高温失稳与碳化物溶解有关,=1 s-1时组织演变特征是项链状动态再结晶  相似文献   

15.
采用热力模拟试验机对Al-0.83Mg-0.59Si铝合金进行热压缩实验,研究了变形温度300~500 ℃、变形速率0.001~10 s-1下材料的动态再结晶行为。实验得到Al 0.83Mg 0.59Si合金在300~500 ℃变形时,软化机制以动态再结晶为主;流变应力会随着变形温度的降低和变形速率的升高而升高,较低变形速率下,动态再结晶行为更充分,应力软化现象更明显。统计实验所得流变应力曲线数据,建立了热变形本构方程,确定了合金热变形激活能Q为480.243 kJ/mol 。基于加工硬化率曲线,建立了其动态再结晶临界应变模型。结果表明,Al-0.83Mg-0.59Si铝合金的流变应力随温度的升高和变形速率的降低而降低,动态再结晶是其主要的软化机制。临界应力与峰值应力存在线性关系:σc=0.85σp-5.061 58。引入Zener Hollomon参数来描述变形条件对临界条件的影响,得到临界应变与Z参数的关系为:εc=0.000 134Z0.051 64。  相似文献   

16.
Ti-1300合金锻造加工的热压缩模拟   总被引:1,自引:1,他引:0  
采用Gleeble-1500热模拟机对Ti-1300近β钛合金进行热压缩变形,研究其在温度为800~1010℃、应变速率为0.01~10 s-1、最大变形量为60%条件下的热变形行为.对热变形后的组织进行分析可知,在低应变速率下,主要发生动态再结晶;在高应变速率下,主要发生动态回复.根据试验数据得出了该合金的加工图,结果表明,Ti-1300合金在高应变速率下变形容易发生流变失稳现象,因此其锻造工艺应宜在较低的变形速率下进行,可得较细小的等轴动态再结晶组织.  相似文献   

17.
TA11钛合金高温变形微观组织演变分析   总被引:1,自引:1,他引:0  
采用Gleeble-3500热模拟实验机对TA11(Ti-8Al-1Mo-1V)钛合金进行变形温度为880~1010℃、应变速率为0.01~50s-1、变形程度为30%和50%的压缩变形实验,研究其在高温变形条件下的动态再结晶行为。基于定向金相测量,通过回归分析建立了TA11钛合金高温变形时初生α相平均晶粒尺寸、动态再结晶体积分数以及动态再结晶晶粒尺寸模型,模型的计算值与实验值的平均误差小于12%,能较好地描述材料在热加工过程中发生动态再结晶的动力学规律。  相似文献   

18.
采用Gleeble-1500热模拟试验机对热等静压态Ti-6Al-4V钛合金在温度950~1050℃、应变速率0.01~1 s-1条件下进行了热模拟压缩实验,研究了变形温度、应变速率对其显微组织的影响规律。结果表明:热等静压态Ti-6Al-4V钛合金在950℃以上变形后淬火组织以粗大的声晶粒与针状及板条马氏体组成,具有典型的β相区变形组织特征。β转变组织形成交错的网篮结构并具有特定的取向关系。变形过程中,发生了动态再结晶,并伴随着动态回复现象。在950℃/0.01 s-1条件下,以动态再结晶占据主导,得到均匀等轴β转变组织。随应变速率增大,以动态回复为主,β晶粒沿金属流动方向拉长,β转变组织得到细化。随温度升高,β晶粒变粗大,并仍然存在拉长变形带。同时,β转变组织有一定程度的粗化。  相似文献   

19.
利用热加工图对具有针状初始组织的Ti-5.7Al-2.1Sn-3.9Zr-2Mo-0.1Si (Ti-6242S)合金的热变形特征进行分析。单轴热压缩试验的温度为850~1000℃,应变速率为0.001~1 s~(-1)。用热加工图确定合金的安全和不安全变形条件;利用扫描电镜(SEM)和光学显微镜(OM)分析合金的显微组织演变过程。研究发现,与在较低温度下变形相比,在1000℃下变形后合金在流动软化行为中的流动应力存在差异,这是由于显微组织发生变化。在950℃和0.001 s~(-1)条件下变形,应变为0.7的两相区加工图表现出较高的功率耗散效率,约为55%,主要是由于发生大量球化。随着应变速率的增加和温度的降低,片层α相的球化减少,而扭折增加;最终,流动行为的失稳区发生在温度为850~900℃、应变速率高于0.01 s~(-1)的条件下,其主要机制为局部流动和绝热剪切。综合考虑功率耗散效率和显微组织,理想的变形条件为:变形温度950~1000℃、应变速率0.001~0.01 s~(-1)。该合金的最佳变形条件为:950℃,0.001 s~(-1)。  相似文献   

20.
利用Gleeble-3500热模拟试验机对Ti-22Al-24Nb合金和Ti-22Al-24Nb-0. 5Y合金试样进行等温恒应变速率压缩试验,研究了在应变速率0. 01~10 s~(-1)、变形温度900~1080℃条件下,添加稀土Y对Ti-22Al-24Nb合金高温流动应力及热变形激活能的影响规律,采用Prasad加工图分析了添加稀土元素Y对Ti-22Al-24Nb合金热加工工艺的影响。结果表明:添加稀土元素Y后,提高了Ti-22Al-24Nb合金的高温变形抗力和变形激活能,含稀土元素Y的Ti-22Al-24Nb-0. 5Y合金的峰值流动应力在各变形条件下均高于未添加稀土的Ti-22Al-24Nb合金,且随应变量的增加,其激活能升高,应变量为0. 6时,Ti-22Al-24Nb-0. 5Y合金激活能达到了668. 464 k J·mol~(-1),当应变量为0. 8时,随应变量的增加,合金变形激活能变化不大;添加稀土元素Y对Ti-22Al-24Nb合金加工图的失稳区域及功率耗散效率影响显著,添加稀土元素Y后,合金在加工图中的失稳区域扩大,提高了合金热变形过程中的功率耗散效率,减小了Ti-22Al-24Nb合金热加工工艺参数范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号