首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
采用纸质材料制成三维管状模型,经过纸质模型碳化、反应性渗硅处理获得多孔SiC陶瓷预制体,选择铸造性能好、成形缺陷小的铸铁作为金属基体,采用铸渗法制备了SiC陶瓷增强金属基复合材料,通过XRD,SEM等分析手段研究了多孔SiC陶瓷和复合材料的显微组织和界面结构.研究表明,纸质模型800C温度碳化,反应性渗硅温度1600℃时制备的多孔SiC陶瓷预制体三维结构稳定,烧结后变形小,微观组织结合紧密;通过铸渗法制备的SiC陶瓷增强金属基复合材料界面结合良好,无明显缺陷.该方法中增强相结构可设计性好,铸渗法制备多孔陶瓷金属基复合材料质量高,为多孔陶瓷增强金属基复合材料的获得提供了试验新方法.  相似文献   

2.
以多孔C泡沫为预制体,利用液相渗Si工艺制备了C/SiC复合材料。采用酚醛树脂浸渍-裂解工艺对C泡沫预制体的孔隙率进行调整,考察浸渍-裂解周期对C泡沫预制体孔隙率的影响,研究了C泡沫预制体孔隙率对C/SiC复合材料密度、力学性能、组成和结构的影响。结果表明:预制体孔隙率为72%时制备的C/SiC复合材料性能较好,其密度为2.58g/cm3、弹性模量为81.39GPa,抗弯曲强度为83.88MPa;随着预制体孔隙率的降低,复合材料的密度、弹性模量和抗弯曲强度不断降低,预制体孔隙率的降低影响液相Si充分扩散与C反应,造成复合材料内部存在大量闭孔,这是导致C/SiC复合材料性能下降的主要原因。  相似文献   

3.
采用纸质材料制成三维管状模型,经过纸质模型碳化、反应性渗硅处理获得多孔SiC陶瓷预制体,选择铸造性能好、成形缺陷小的铸铁作为金属基体,采用铸渗法制备了SiC陶瓷增强金属基复合材料,通过XRD,SEM等分析手段研究了多孔SiC陶瓷和复合材料的显微组织和界面结构。研究表明,纸质模型800℃温度碳化,反应性渗硅温度1600℃时制备的多孔SiC陶瓷预制体三维结构稳定,烧结后变形小,微观组织结合紧密;通过铸渗法制备的SiC陶瓷增强金属基复合材料界面结合良好,无明显缺陷。该方法中增强相结构可设计性好,铸渗法制备多孔陶瓷金属基复合材料质量高,为多孔陶瓷增强金属基复合材料的获得提供了试验新方法。  相似文献   

4.
以定向冷冻铸造结合挤压浸渗工艺,成功制备了SiC含量为20%的层状梯度SiC/Al-Si-Mg复合材料,采用扫描电镜(SEM)、能谱分析(EDS)以及X射线衍射(XRD),研究了复合材料的微观结构、元素分布以及SiC/Al-Si-Mg复合材料的界面。结果表明,SiC/Al-Si-Mg复合材料浸渗完全,界面结合良好,其微观结构保留了SiC陶瓷预制体中的层状梯度结构,定向梯度孔隙有利于熔体的浸渗;经1 300℃烧结处理后,预制体孔隙中SiC表面生成了SiO_2,并在浸渗过程中反应生成了MgAl_2O_4相,从而有助于基体相和增强相之间的润湿性及界面结合强度的提高。  相似文献   

5.
本实验通过挤压浸渗工艺成功制备了SiC泡沫陶瓷增强ZL205A铝合金复合材料,并研究了不同孔隙率的泡沫陶瓷增强相对复合材料性能的影响。通过微观结构分析,制备的复合材料两相间结合紧密,没有裂纹及其他缺陷产生。多孔陶瓷作为增强相可以有效地细化ZL205A合金的晶粒,多孔陶瓷孔隙率的降低,孔结构越小,合金晶粒越细小。对制备的复合材料进行力学性能测试,复合材料的硬度和抗弯强度最高能够达到127.6HV和415MPa。对制备的复合材料进行摩擦磨损测试,结果表明,连续陶瓷相的存在将铝基体严重的粘着磨损和剥落磨损转变为较轻的磨粒磨损,极大提升了复合材料的摩擦磨损性能,为其用于耐磨领域提供了理论依据。  相似文献   

6.
设计了不同孔径、不同形状的多孔蜂窝结构,对挤出浆料组成配方和挤出成形工艺进行了优化,采用挤出成形法制备了蜂窝多孔SiC陶瓷坯体,并通过反应烧结制备了蜂窝多孔SiC陶瓷,研究了挤出压力、速率等工艺参数对蜂窝多孔SiC陶瓷坯体质量的影响,以及反应烧结温度、排硅时间等对蜂窝多孔SiC陶瓷密度、强度等性能的影响。结果表明:合适的挤出压力、挤出速率有助于确保多孔陶瓷坯体的成形和具有一定的强度;反应烧结后排硅时间在0.5h时多孔SiC陶瓷三点弯曲强度最高,为25.67MPa,制备的多孔SiC陶瓷/耐热钢基复合材料陶瓷分布均匀,界面结合良好。  相似文献   

7.
SiCP增强泡沫铝基复合材料的制备工艺研究   总被引:5,自引:1,他引:4  
将SiC颗粒增强铝基复合材料的制备技术与泡沫铝熔体发泡技术相结合,探索了制备SiC颗粒增强泡沫铝基复合材料的工艺方法。讨论了SiC颗粒与铝基体之间存在的润湿性,界面反应以及SiC颗粒在熔体中沉降等问题,通过选择合适的合金成分,对SiC颗粒进行预处理,采用特定的搅拌和发泡等一系列工艺方案成功地予以解决。在熔体发泡过程中,通过严格控制发泡温度、搅拌速度和搅拌时间等工艺参数,制得了孔隙率基本可调,SiC颗粒和孔洞分布均匀的泡沫铝样品。  相似文献   

8.
利用搅拌铸造技术制备SiCp/A356铝基复合材料.通过金相观察(OM),扫描电镜(SEM)及力学性能测试对所制备的颗粒增强铝基复合材料的显微组织和力学性能进行了研究.结果表明,SiC增强颗粒较均匀地分布于基体中,SiC/Al界面处存在明显的Si溶质偏聚,复合材料的孔隙率为4.2%;与基体合金相比,SiC颗粒的加入提高了复合材料的硬度和屈服强度,抗拉强度及延伸率略有下降;断口分析表明,搅拌铸造SiCp/A356铝基复合材料主要的断裂机制为SiC/Al界面脱粘及基体合金的脆性断裂.  相似文献   

9.
SiCw和纳米SiCp混杂增强铝基复合材料的制备与评价   总被引:7,自引:2,他引:7  
采用湿成型法制备了体积分数可以调节的碳化硅晶须与纳米碳化硅颗粒混杂的预制块,确定了挤压铸造法制备混杂增强铝基复合材料的工艺参数.通过扫描电镜和透射电镜分析发现:复合材料中晶须与纳米颗粒分布均匀,并与基体合金的界面结合良好,无界面反应物和孔洞;与基体合金相比,混杂增强复合材料的抗拉强度和弹性模量明显增高,延伸率降低;在晶须体积分数一定时,随纳米SiC颗粒体积分数的增加,复合材料的抗拉强度升高.  相似文献   

10.
采用3D打印制备SiC陶瓷预制体,用压力浸渗工艺制备SiC增强A356基复合材料(SiC/A356复合材料),采用光学显微镜(OM)、扫描电镜(SEM)、能谱仪(EDS)及X射线衍射仪(X-ray)等对其物相、组织形貌等进行研究。结果表明,用该方法制备的SiC/A356复合材料组织致密,颗粒分布均匀,颗粒与基体的界面结合性能较好;SiC增强与A356基体界面反应控制良好,未检测到Al_4C_3脆性相生成,表明A356合金中的Si有利于防止脆性相Al4C3的形成,Mg元素的存在提高了A356基体和SiCp增强体之间的润湿性。  相似文献   

11.
采用反应熔渗法将熔融Si渗入C/C多孔体中制备了C/SiC复合材料。研究了包埋式布硅对C/C多孔体不同位置毛细吸附行为的影响以及对制备C/SiC复合材料密度的影响。反应熔渗制备的C/SiC复合材料内部存在残余的游离硅,经过除硅处理后游离硅显著减少,但其致密化程度有所降低,同时其弯曲强度明显下降。  相似文献   

12.
使用AEM和HREM研究了添加纳米SiC颗粒和同时添加纳米SiC颗粒及SiC晶须的两种Si3N4 复合陶瓷材料的微观组织和断裂机制。结果表明 ,部分SiC颗粒分布在Si3N4 晶内 ,SiC晶须分布在Si3N4 晶粒之间 ,SiC颗粒和晶须与Si3N4 界面之间不存在第二相组织 ,非晶组织大多分布在Si3N4 三叉晶界。断裂裂纹主要沿晶界和相界面扩展 ,也可能穿过少数Si3N4 晶粒。当裂纹扩展遇到SiC颗粒和 /或SiC晶须时 ,会发生转弯 ,产生分枝裂纹或微裂纹并在Si3N4 晶内和Si3N4 晶粒的断裂表面引起晶格畸变 ,这降低了裂纹扩展能量 ,从而改善复合陶瓷材料的断裂强度和断裂韧性  相似文献   

13.
通过压力-浸渗法制备多孔SiC陶瓷/Zr基非晶合金复合材料。利用分离式霍普金森压杆装置(SHPB)、S-4800场发射扫描电镜等测试分析手段,探究复合材料制备保温时间和多孔碳化硅性能对多孔SiC陶瓷/Zr基非晶合金复合材料动态压缩性能的影响,并揭示了其变形机制。结果表明:保温时间和多孔碳化硅性能对多孔SiC陶瓷/Zr基非晶合金复合材料的动态抗压强度都有较大影响,当多孔碳化硅孔隙率为23.77%,平均孔径尺寸为26.72μm时,在复合材料制备浸渗温度为860℃,浸渗后保温6.0 min时,复合材料具有最高的动态抗压强度,为1757 MPa。多孔SiC陶瓷/Zr基非晶合金复合材料动态压缩断裂为脆性断裂,断口微观形貌特征包括SiC陶瓷相上形成具有不同特征的解理台阶,Zr基非晶合金相形成不同形态的脉状花样,非晶相保持相对完整。Zr基非晶合金相能有效阻碍裂纹的扩展,导致非晶相周围的碳化硅碎裂并挤压非晶相整体运动,从而提高了多孔SiC陶瓷/Zr基非晶合金复合材料动态抗压强度。  相似文献   

14.
The effect of particle size and initial powder phase on the microstructure of porous SiC ceramics was investigated. When β-SiC powder was used as a starting material, porous SiC ceramics were formed by rapid grain growth of α-SiC during the β-α phase transformation. As the particle size of the initial powders decreased, β-α SiC phase transformation and rapid grain growth of α-SiC occurred earlier. Grain and pore size of SiC porous ceramics can be controlled by the addition of α-SiC seed. Grain and pore size decreased as the concentration of α-SiC seed increased. The bending strength of porous SiC ceramics did not depend on pore size.  相似文献   

15.
Biomorphic SiC materials with tailor-made microstructure and properties similar to ceramic materials manufactured by conventional method are a new class of materials derived from natural biopolymeric cellulose templates (wood). Porous silicon carbide (SiC) ceramics with wood-like microstructure have been prepared by carbothermal reduction of charcoal/silica composites at 1300-1600 °C in inert Ar atmosphere. The C/SiO2 composites were fabricated by infiltrating silica sol into porous activated biocarbon template. Silica in the charcoal/silica composite, preferentially in the cellular pores, was found to get transformed in forms of fibers and rods due to shrinkage during drying. The changes in the morphology of resulting porous SiC ceramics after heat treatment to 1600 °C, as well as the conversion mechanism of wood to activated carbon and then to porous SiC ceramic have been investigated using scanning electron microscope, x-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry. Activation of carbon prior to silica infiltration has been found to enhance conversion of charcoal to SiC. The pore structure is found to be uniform in these materials than in those made from as-such charcoal/silica composites. This provides a low-cost and eco-friendly route to advanced ceramic materials, with near-net shape potential.  相似文献   

16.
以Ti、Si3N4、石墨和α-SiC粉体为原料,通过反应热压合成了TiN-SiC复合陶瓷材料。研究结果表明:在TiN-SiC复合陶瓷材料中,TiN和SiC晶粒细小均匀,无异常晶粒长大现象,TiN晶粒尺寸为1μm~7μm,SiC均匀分布于TiN之间;该复合材料的密度、维氏硬度和断裂韧性分别为4.41g/cm3、13.6GPa和6.89MPa·m1/2,其增韧机制主要为裂纹偏转和裂纹分叉机制。  相似文献   

17.
通过机械搅拌发泡结合冷冻-凝胶法制备了三维互联多孔SiC陶瓷材料,所获得的多孔陶瓷材料孔径分布均匀、孔结构可调并具有双级孔结构。研究了PVA含量与搅拌速度对多孔陶瓷孔结构及性能的影响。结果表明,随着PVA含量的增加,孔结构均匀程度和联通性提高、一级孔孔径尺寸逐渐减小且孔壁变薄。当ω(PVA)/ω(SiC)质量比为1.5时,样品孔径分布最均匀;并且随着搅拌速度的增大,孔隙率增加、联通性增强、一级孔孔径尺寸减小。当转速为1600 r/min时,SiC多孔陶瓷的孔隙率和抗压强度分别为88.42%和4.36 MPa。  相似文献   

18.
以SiC纤维为增强相,SiBCN复相陶瓷先驱体为浸渍剂,采用聚合物先驱体浸渍裂解工艺制备了SiC/SiBCN复合材料。采用SEM和力学性能测试对SiC/SiBCN复合材料氧化前后组分、形貌及力学行为进行了分析。试验表明,随着SiBCN复相陶瓷先驱体中聚硼氮烷(PBN)含量的增加,先驱体陶瓷产率先增加后降低,SiC/SiBCN复合材料1000℃/20 h氧化后的弯曲强度保留率亦先增加后降低。这主要归因于SiBCN复相陶瓷先驱体中PBN含量的增加有利于先驱体分子交联程度增加,更容易形成稳定的三维网络结构。此外,材料孔隙率以及SiBCN复相陶瓷的氧化行为也成为影响SiC/SiBCN复合材料氧化稳定性的重要因素。  相似文献   

19.
In the present study, porous self-bonded silicon carbide (SBSC) ceramics were fabricated at temperatures ranging from 1700 °C to 1800 °C using SiC powders, silicon and carbon as starting materials. The amount of (Si + C) powders is fixed and the influence of submicron SiC particle content (0 wt.% to 80 wt.%) on the porosity and strength of the ceramics was studied. The experimental results illustrate that the packing efficiency increased with the increase in submicron particle content to 40 wt.%, and thereafter decreased. The green porosity largely determines the final porosity of the sintered specimens, irrespective of the submicron SiC particle content. The flexural strength increased with the addition of submicron particle content and sintering temperature. Typically, SBSC ceramics prepared using 80 wt.% submicron SiC particle content possess 46% porosity and 42 MPa flexural strength when sintered at 1800 °C.  相似文献   

20.
以TiSi2、SiC和Mo粉为原料通过反应烧结方法制备Si3N4基陶瓷,并测试其抗氧化性能.结果表明:Si3N4-TiN-SiC陶瓷的质量增量随着氧化时间的延长而增加,氧化质量增量随时间的变化基本服从抛物线规律,同时质量增量随着氧化温度的升高而增加.而Si3N4-TiN-MoSi2-SiC复合陶瓷质量增量在低温下随着时间延长而增加,在高温下质量增量随着时间延长而减少.XRD和SEM结果表明Si3N4-TiN-SiC陶瓷的氧化产物主要是TiO2、Si02和Si2N20,而Si3N4-TiN-MoSi2-SiC陶瓷则是Ti02、Si02、Si2N2O和Mo03.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号