首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
为研究洁净度对钢板抗弹性能的影响,用12.7 mm穿甲燃烧弹对厚度为18 mm、抗拉强度为2 000 MPa、洁净度不同的40CrNi2Mo钢板进行抗弹性能测试。通过观察不同弹速下钢板出现的损伤形貌,评定背面强度极限,分析穿甲机理。结果表明:高洁净度钢板抗弹性能显著高于低洁净度钢板;高洁净度钢板穿甲机理为脱痂,与洁净度关系较小;超高强度钢板较低的绝热剪切临界失稳应变是产生绝热剪切和裂纹,进而产生脱痂破坏的主要原因,在脱痂破坏前,钢板仍以塑性扩孔方式消耗较多弹丸动能,抗弹性能相对较高;低洁净度钢板穿甲机理为崩落,与洁净度关系较大;较低的平面应变断裂韧度降低临界裂纹尺寸,导致崩落裂纹优先形核和扩展,消耗更低弹丸能量,提前终止了塑性扩孔,因此抗弹性能相对较低。  相似文献   

2.
弹丸倾斜入射时40CrNi2Mo钢抗弹性能研究   总被引:1,自引:1,他引:0  
为了研究弹丸倾斜入射时抗拉强度对钢板抗弹性能的影响,利用12.7mm穿甲燃烧弹对18mm厚不同抗拉强度的40CrNi2Mo钢板进行抗弹性能测试。观察钢板以不同倾斜角度放置时出现的损伤形貌,评定了安全角,并测量背凸高度,弹坑长度和深度,分析不同抗拉强度钢板在倾斜入射时的穿甲机理。结果表明,安全角随着抗拉强度的升高,呈现非单调变化的趋势。抗拉强度在1470MPa以下的钢板被倾斜击穿时,弹丸动能的大部分消耗在开坑和塑性扩孔阶段,安全角随抗拉强度升高而减小。抗拉强度超过1700MPa的钢板,其击穿弹坑仅有开坑区和冲塞破坏区,安全角再次随着抗拉强度的升高而减小。  相似文献   

3.
利用卵形尖头弹丸垂直撞击40CrNi2Mo钢中厚靶板,观察不同弹速下钢板出现的损伤形貌,评定背面强度极限,分析了穿甲机制与抗弹性能的关系。结果表明,抗拉强度小于1 270 MPa时,钢板以塑性扩孔形式穿甲。利用两阶段塑性扩孔模型计算出的钢板塑性扩孔耗能与实验吻合较好。由于强度是影响塑性扩孔耗能的主要因素,因而钢板的抗弹性能随着强度升高而单调递增。强度进一步升高后钢板因产生与绝热剪切相关的损伤而失效,因而抗弹性能下降。  相似文献   

4.
装甲板弹坑底部冠状裂纹的观测与分析   总被引:1,自引:1,他引:0  
王猛  黄德武  荣光  刘岩  杨明川 《兵工学报》2009,30(12):1579-1583
发射小口径杆式穿甲弹对30CrMnMo装甲钢板进行穿甲侵彻嵌入试验,并.对靶板弹坑剖面进行扫描电镜观测及能谱分析。装甲板弹孔底部剖面除了产生绝热剪切带外,还观测到弹坑底部下面深1?2mm处形成一条或几条冠状裂纹。无论穿甲弹芯是钨合金还是钨纤维复合材料,弹坑底部均产生冠状裂纹。侵彻过程中,弹体破坏变形局部化和弹芯头部材料不断销蚀,造成弹、靶接触区域局部瞬间不均匀卸载,卸载波相互作用可形成局部围绕弹坑底部的冠状裂纹。冠状裂纹与绝热剪切带在局部区域交汇,构成穿甲侵彻过程中装甲钢板破坏的前期模式。  相似文献   

5.
铝合金多层板靶板损伤形式及其微观组织分析   总被引:1,自引:0,他引:1  
采用53式7.62 mm弹道枪、7.62 mm穿燃弹入射铝合金多层板,弹速为824 m/s。利用光学显微镜观察靶板侵彻后的弹坑微观组织。结果表明,距贯穿初始位置约4.3 mm开始出现绝热剪切带,距贯穿初始位置约3 mm开始出现裂纹。裂纹均存在于面板中。在弹丸冲击下,出现于面板弹坑微观组织中的绝热剪切带与裂纹相比,是一种更有效的能量耗散方式。背板贯穿处边缘未见裂纹和绝热剪切带。中间填料层对裂纹扩展有明显的抑制作用。  相似文献   

6.
高强度钢在高速冲击载荷下的动态响应 ?   总被引:6,自引:3,他引:3  
为了探讨高强度钢板在高速冲击载荷下的动态行为,用12.7mm钢芯穿甲弹垂直射击CrMo、SiMnMo和CrNiMnMoB钢靶板,靶板硬度为d_(HB)=2.70~3.50mm。对穿甲机制进行了分析,讨论了绝热剪切带的形成原因及其在冲塞穿甲中的作用。从弹丸能量和弹坑容积的关系出发,探讨了穿甲机制和抗弹性能的差异。试验结果表明:穿甲机制和抗弹性能取决于钢板的厚度和硬度。在较高硬度时,由大量剪切变形而产生的绝热剪切带将导致冲塞破坏。当d_(HB)=3.0~3.2mm时,钢靶板呈现出混合型穿甲机制,并显示出较好的抗弹性能。  相似文献   

7.
穿甲试验靶板中绝热剪切带特征及与裂纹的关系   总被引:1,自引:0,他引:1  
采用14.5mm弹道枪发射7.6mm次口径93W穿甲弹,对603钢进行穿甲侵彻试验。结果表明:在一定的条件下,绝热剪切带交叉分布,剪切带内变形极大且不均匀,成为微裂纹和微孔洞的起源,这些微裂纹和微孔洞相互连接,导致裂纹沿绝热剪切带萌生、扩展,最终形成沿整个绝热剪切带的大裂纹,使部分穿孔表面形成碎片,造成靶板的损伤,降低靶板的力学性能,是靶板破坏的先兆;但绝热剪切带与裂纹并不完全等同,有些剪切带由于变形量不大,不产生裂纹。  相似文献   

8.
通过穿甲试验,研究装甲钢硬度与抗弹性能之间的关系;由弹坑解剖分析了装甲钢板穿甲破坏形貌以及弹坑表面的强化机理。试验结果表明:高硬度装甲钢抗弹性能好;装甲钢板为混合穿甲形式破坏;弹坑表面的变形带和相变带是由非常细小马氏体板条组成,其硬度非常高,远远高于装甲钢板的基体和淬火硬度。  相似文献   

9.
对抗拉强度在1 000~2 300 MPa范围内的3种相同强塑积薄钢板进行抗弹性能试验,观察弹击后弹坑的宏观形貌和金属流线变化,测量弹坑周边硬度,结合钢板的强度和塑性讨论钢板破坏形式对抗弹性能的影响。试验结果表明:由于塑性变形可以有效吸收弹丸的动能,钢板以塑性变形较大的盘形穿孔破坏时,相同强塑积钢板抗弹性能差异较小,强度和塑性共同影响钢板的抗弹性能;而钢板以塑性变形较小的冲塞破坏时,塑性的影响弱化,相同强塑积钢板中较高强度钢板的抗弹性能明显高于较低强度钢板。2 300 MPa钢板在弹丸未穿透时发生破碎,这与其塑性较低有直接的关系。  相似文献   

10.
高速侵彻装甲钢绝热剪切带特性研究   总被引:7,自引:1,他引:7  
用φ14.5mm口径滑膛弹道枪发射7.6mm口径93W穿甲弹,对2П高强度钢靶板进行穿甲侵彻试验.回收到了完整的冲塞。是典型的冲塞破坏。冲塞的发生以绝热剪切破坏为主,靶板中残留的剪切带比较宽大,由弹孔表面向靶板内延伸,呈网状分布,易造成碎块的脱落。另外,绝热剪切带的形成与塑性力学静载下滑移线的形成密切相关,其走向与滑移线的方向基本一致。  相似文献   

11.
分析金属靶板弹道极限的延性扩孔模型   总被引:6,自引:1,他引:5  
研究了刚性尖头弹垂直撞击塑性金属靶板的弹道极限问题,提出两阶段延性扩孔模型.应用功能原理,由圆柱形空腔膨胀理论和Taylor扩孔理论导出靶板塑性变形耗能,由能量守恒原理得到弹道极限速度的近似解析解.与铝合金及装甲钢靶板弹道试验数据比较表明,解析解的计算结果与试验结果吻合较好.  相似文献   

12.
为研究超高分子聚乙烯板的抗冲击性能,以不同厚度超高分子量聚乙烯平板为靶体,用一级轻气炮分别发射平头和卵形弹开展打靶试验。通过分析靶板厚度、弹体头部形状对靶板弹道极限及能量吸收的影响,分析靶板损伤形貌及机理特征。结果表明:随靶板厚度增加,弹道极限非线性递增;弹体头部形状对弹道极限影响明显;卵形弹撞击靶板时破坏由"盘形凹陷"转为"延性扩孔"。随弹体初始动能增大,头部形状对靶板能量吸收率的影响越来越显著。平头弹侵彻靶板过程为先延性扩孔侵彻,压缩弹体前方靶材料,弹体周围剪切变形,最终形成冲塞和弹出。  相似文献   

13.
高华  熊超  殷军辉 《兵工学报》2018,39(8):1565-1575
为研究多层异质复合靶板中装甲钢排布位置,对其塑性变形微观机理及受力状态的影响规律,开展了不同结构方式复合靶板抗侵彻试验。基于金属材料学理论,对复合靶板中装甲钢弹孔塑性变形微观机理进行研究,分析了装甲钢弹坑表面硬度分布及组织演变规律,利用数值模拟研究弹丸侵彻装甲钢过程力学行为与变形机理的内在联系。研究结果表明:波阻抗匹配由高至低,弹丸冲击应力波在层间界面反射形成拉伸波,产生裂纹扩展,降低弹丸侵彻阻力;绝热剪切带内部受温度以及挤压载荷影响,产生高硬度细化马氏体晶粒,抑制塑性变形向内延伸;装甲钢背板强度及刚度越高,对装甲钢塑性变形产生位错运动的阻碍作用越强,有利于提高弹丸开坑阻力。  相似文献   

14.
穿甲弹用新型钨合金材料的研究   总被引:1,自引:1,他引:0  
试验采用粉末冶金的方法,用合金钢粉的包覆粉作为主要粘结相,设计制备了新型穿甲弹战斗部用钨合金材料。对该合金进行了微观组织分析和力学性能检测。结果表明:室温抗拉强度为790 MPa,延伸率为9.0%,满足了作为穿甲弹战斗部材料基本的力学性能要求;在应变为0.32、应变率为3 600 s-1的条件下,合金在最大剪应力方向上出现了剪切带的特征。  相似文献   

15.
混凝土靶板冲塞型穿孔模型研究   总被引:1,自引:0,他引:1  
研究了刚性弹垂直撞击混凝土靶板的冲塞穿孔模式、耗能机理、弹道极限及剩余速度.应用空腔膨胀理论导出1、2阶段的耗能,应用断裂力学理论、动量和能量守恒求得第3阶段冲塞耗能,由3阶段总的耗能最小确定塞块厚度,从而得到弹道极限、剩余速度解析式.与现有理论模型结果和弹道试验数据比较表明,文中公式的计算结果与试验结果吻合较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号