首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对S809和S805 2种厚度不同的翼型进行尾缘修剪,采用翼型设计分析软件Xfoil对修剪前后翼型的气动性能进行计算,研究了不同程度尾缘修剪对翼型气动性能的影响,并采用CFD数值模拟方法进行流场特性分析.结果表明:尾缘修剪后会引起翼型在附着流区升力系数减小,最大升阻比减小,减小程度随着修剪程度的增加而加剧;对于厚度不同的翼型,尾缘修剪对其影响的主要区别在于失速区较厚翼型阻力系数减小,较薄翼型升力系数增大;翼型表面压力系数因尾缘修剪而发生改变,较厚翼型压力分布变化较为明显;尾缘修剪对尾流的扰动会影响翼型表面其他部位的流动,进而影响翼型气动性能.  相似文献   

2.
尾缘厚度对风力机翼型气动特性影响参数化研究   总被引:3,自引:0,他引:3  
该文拟从气动性能角度考察钝尾缘厚度对风力机翼型气动特性的影响.采用美国NREL带有试验数据的风力机专用翼型S814和S827,通过XFOIL软件对翼型尾缘厚度参数化处理.在最大厚度、弯度和弦宽不变的条件下,尾缘厚度相对于弦长在0.5%~5.0%范围变化.数值计算分析认为,尾缘厚度在一定范围增大时,翼型升力系数有明显提升,同时阻力系数也持续增大,升阻比则呈先增后降趋势,研究翼型尾缘厚度在1.5%(相对弦长)附近其升力系数和升阻比同时达到最佳.研究结论可供风力机叶片设计时量化参考.  相似文献   

3.
为得到高气动性能、低噪声的风力机专用翼型,基于参数化建模翼型,研究前缘外形对风力机翼型气动性能及气动噪声的影响规律。通过分离涡模拟方法和声学类比方程建立噪声预测方法。针对非对称翼型S809通过样条函数参数化处理前缘改形进行气动噪声计算。结果表明:翼型压力面前缘加厚,对翼型升阻力系数无明显影响,但大攻角时翼型周围压力分布均匀,流动相对稳定,且气动噪声声压级低于原始翼型,随压力面厚度增加气动噪声越大;吸力面加厚使得翼型升力系数增大,阻力系数减小,能抑制翼型失速时尾缘涡与前缘涡的生成,变形量越大气动噪声越小;翼型前缘上弯,翼型在失速区升力系数减小,阻力系数增大,流动越加不稳定,声压级随着攻角的增加呈递增趋势;翼型前缘下弯,翼型处于失速区升力系数增大,阻力系数减小,能抑制流动分离,未生成前缘涡和尾缘涡,当前缘下弯不变时,随加厚厚度增加翼型声压级呈减小趋势,且前缘下弯翼型声压级小于前缘上弯。  相似文献   

4.
陈涛  蒋笑  王海鹏  吴洲 《可再生能源》2020,38(6):765-770
文章通过数值模拟方法研究了不同相对厚度的前缘缝翼对S809翼型气动性能的影响,并揭示了前缘缝翼相对厚度对流动控制产生影响的机理。研究结果表明:在大攻角下,空气流经过前缘缝翼会在其尾部产生涡旋,尾缘涡旋的形成有助于抑制S809翼型流动分离,进而改善翼型绕流场;不同相对厚度的前缘缝翼产生尾缘涡旋不同的流动轨迹,对翼型的流动控制作用效果不同;相同条件下,前缘安装最大相对厚度为35%的前缘缝翼能够将S809翼型最大升力系数提升至1.25,失速攻角推迟至17.21°;安装最大相对厚度为14%的前缘缝翼,能够使S809翼型最大升力系数提升至1.53,并使翼型在攻角为20.16°时仍未发生失速。  相似文献   

5.
相关研究表明多孔尾缘在降低翼型噪声的同时,对其气动性能也有一定影响,且穿孔几何尺寸和位置是影响尾缘翼型噪声与气动特性的重要参数。针对NACA65019翼型,在来流雷诺数Re=2×105条件下,采用计算流体力学方法研究具有不同穿孔孔径和位置的尾缘双穿孔翼型绕流特征和噪声特性,并通过部分实验验证模拟的可靠性。研究结果表明:尾缘双穿孔翼型在小攻角下,升阻比较原翼型有较明显的提升,当来流攻角大于12 °后,升阻比开始小于原翼型;在一定来流攻角范围内,尾缘双穿孔翼型可延迟吸力面分离,降低吸力面边界层厚度;边界层厚度的降幅与穿孔孔径、穿孔位置密切相关,最大可达28.8%。根据相关声学理论模型,分析了穿孔孔径及位置对尾缘双穿孔翼型噪声特性的影响,经数值研究表明:α=6°时,在100~7 kHz频率范围,不同的尾缘双穿孔翼型相较于原翼型噪声降低最高可达10.7 dB;d=1.0 mm和Xc/c=0.82翼型效果最佳。  相似文献   

6.
采用基于雷诺平均的流体力学计算方法,分别对100 k W钝尾缘风力机、钝尾缘翼型及对应的尖尾缘风力机和翼型进行数值模拟研究,利用反BEM方法从旋转叶片计算结果中获得翼型的三维流场信息。研究结果表明,钝尾缘翼型应用于叶片内侧,其气动性能优于相同厚度的尖尾缘翼型,叶片根部存在明显的展向流动,与旋转导致的边界层方程中的对流项、科氏力项及离心力项直接相关,是造成钝尾缘翼型三维气动特性明显有别于二维的原因,此差异还与翼型展向位置、攻角关系密切。  相似文献   

7.
在雷诺数Re=3×10^5条件下,利用遗传算法对翼型S826进行了气动外形优化设计。优化过程中,为了防止尾缘厚度太小,缩小了影响尾缘厚度参数的变化范围,降低了局部的优化幅度。结果显示,优化后的翼型,最佳升阻比提升了约9.9%,气动性有了明显的改善,且优化翼型尾缘厚度基本没有变薄,保证了工程的实用性,说明了利用遗传算法进行低雷诺数翼型气动外形优化的可行性。  相似文献   

8.
基于RANS方程大型风力机翼型钝尾缘修型气动性能计算   总被引:3,自引:0,他引:3  
通过耦合求解二维定常RANS方程和基于线性稳定性分析的转捩预测程序,计算了DU97-Flat翼型的气动性能并与实验结果进行比较,结果表明该文方法可进行有钝尾缘厚度翼型的气动性能计算。使用耦合求解方法,以DU97-W-300翼型为例,计算几种常见的风力机翼型钝尾缘修型方法(直接截断、对称加厚、不对称加厚和翼面旋转等)得到的钝尾缘翼型的气动性能,并分析各种修型方法对气动性能的影响。结果表明:直接截断修型方法并未增加此翼型的升力系数但对阻力增加的影响最小;不对称增加厚度引起的升力系数增加最明显,但会引起翼型使用角度区域的移动;通过指数因子形式对称增加时,指数因子在1.8~2.5之间较适中。  相似文献   

9.
为改善风力机翼型气动特性,提出吹吸结合射流(Suction-Blow Combined Jet,SBCJ)方式,以S809为基础翼型,研究在不同攻角、射流动量系数及开孔位置时SBCJ的控制效果,分析其控制机理和影响规律.结果 表明:SBCJ可移除翼型吸力面低动量流体并改变尾缘库塔条件,从而显著增大翼面两侧压差,最终提升翼型气动性能;当射流动量系数较小时,翼型升力显著增大、修正阻力减小且流动分离减弱;当射流动量系数为0.01、吸气孔距前缘0.15c、吹气孔距尾缘0.2c、攻角为10°时,翼型修正升阻比提升率最大.  相似文献   

10.
针对大型水平轴风力机叶片运行工况复杂和结构强度要求高的问题,提出一种钝尾缘翼型的多目标优化方法。基于多岛遗传算法,采用Hicks-Henne型函数和钝尾缘函数对钝尾缘翼型进行参数化拟合,通过Matlab软件自编程序调用XFOIL气动分析软件进行流场分析,对选定翼型进行多工况多目标优化设计。整个优化过程集成在Isight平台中,可实现自动优化。采用上述方法,选用NACA63921翼型作为初始翼型进行多目标优化,利用Fluent转捩模型对得到的钝尾缘翼型进行CFD数值验证,并与几种常见的同厚度翼型进行对比。数值验证表明,优化得到的钝尾缘翼型在多个工况点下的升阻比均高于同厚度的FFA、DU系列等现有风力机翼型,在失速工况区流动分离延后,具有更好的气动稳定性。  相似文献   

11.
加装钝尾缘改善风力机桨叶气动性能的研究   总被引:3,自引:0,他引:3  
对 NACA4412 翼型流场进行了数值模拟,发现在翼型尾部上表面存在一对方向相反交替脱落的漩涡.为了改善叶片的空气动力特性,在叶型尾部加装 Gurney 襟翼,并进一步改进为钝尾缘的叶型.研究结果表明:钝尾缘翼型尾部漩涡消失,升力系数增大,且在翼型失速前升力系数增大较为明显,阻力系数稍有增加,气动性能明显好于原翼型.基于改进前后翼型对风力机桨叶进行了优化设计,分析比较了两种翼型风力机的功率输出特性.结论:在相同功率下,具有钝尾缘翼型的风力机桨叶弦长相对较小,桨叶的扭角相近;在风力机工作风速范围内,改进翼型的风力机功率和功率系数都有所增加,尤其是在低风速段提高较明显,启动风速功率增量达到了30.5%;钝尾缘翼型风力机性能明显优于原翼型的风力机,年输出功率提高了7.69%.  相似文献   

12.
粗糙度对风力机翼型气动性能影响的模拟研究   总被引:1,自引:0,他引:1  
选取几种具有代表性的风力机叶片翼型,探讨在光滑条件与粗糙条件下翼型的空气动力性能。通过在翼型尾缘处添加粗糙带,与原翼型进行对比得到升力系数、升阻比等变化曲线,同时分析不同表面粗糙厚度对翼型气动特性的影响。结果显示:添加粗糙带后,翼型NACA4415,FFA-W3-211的升力系数提高,翼型S822、DU91-W2-250的升力系数下降,4种翼型的升阻比降低。表面粗糙带厚度对翼型气动性能的影响存在差异性,翼型S822最适合运行于低雷诺数下的风沙环境。  相似文献   

13.
为研究三角襟翼对风力机叶片翼型气动特性的影响,将三角襟翼加至NACA4412翼型尾缘,建立其二维襟翼计算模型,基于CFD数值模拟方法分析不同宽度和长度的三角襟翼在0°~18°攻角范围内的气动特性,得到了各攻角下升阻力系数、升阻比及翼型壁面压强分布曲线。结果表明:增加襟翼长度,使得翼型升阻比减小,失速攻角提前,增加襟翼宽度,使得翼型升阻比增大,失速攻角延后,因此适当减小三角襟翼的长度和增加其宽度有助于提高翼型的气动特性,将翼型尾缘5%部分作为空间生成襟翼,与传统襟翼相比,节省了制造材料和空间。  相似文献   

14.
钟伟  王同光  王强 《太阳能学报》2011,32(10):1523-1527
以S809翼型为例分析了转捩对水平轴风力机翼型气动特性的影响.首先采用多种湍流模型对S809翼型开展了全湍流数值模拟,观察了忽略转捩条件下的翼型升阻力特性,然后开展了考虑转捩的数值模拟,分析了转捩对翼型升阻力特性和尾缘分离的影响.结果表明,在附着流动状态下,数值模拟中忽略转捩会导致翼型升力系数被低估约10%,阻力系数则被成倍高估;转捩对翼型尾缘分离也有一定影响,转捩点越靠近前缘,尾缘附近附面层速度型的饱满程度降低,抵抗逆压梯度的能力减弱,尾缘分离越容易发生.  相似文献   

15.
结合层流翼型与钝尾缘的特性,通过Hicks-Henne型函数对翼型参数化修型,基于多岛遗传算法及Xfoil气动分析,针对大型水平轴风力机翼型进行多目标函数、多设计工况、多约束条件下的优化设计,得到适用于大型风力机的高性能翼型族(USST翼型族)。其升阻比在大多数攻角下均高于同厚度的FFA、DU系列等现有风力机翼型族,且在同样的升力系数下具有更大的升阻比。最后为考核优化设计得到的翼型族,采用数值模拟方法对优化结果进行验证,证明设计得到的新型风力机翼型族具有优越的气动性能。  相似文献   

16.
通过研究尾缘气动弹片对翼型动态失速特性影响,提出一种基于气动弹片的主动控制策略,使其于大攻角时抬起,小攻角时闭合。并采用计算流体动力学方法对比分析主动式气动弹片对不同厚度翼型抑制流动分离作用的效果。结果表明:对于薄翼型,发生动态失速时,气动弹片可延缓翼型尾缘涡旋与前缘主流涡的相互作用,减小翼型升力系数骤降幅度;随翼型厚度增加,流动分离点从翼型前缘转向后缘,气动弹片可有效分割较大分离涡,减轻流动分离程度,限制分离涡发展,同时抑制尾缘伴随小涡产生,提高翼型升阻比。  相似文献   

17.
动态失速现象严重影响风力机气动性能,在翼型前缘布置主动式气动滑片可有效改善失速现象。为此基于NACA0012翼型,通过数值模拟研究气动滑片对翼型气动性能及噪声特性的影响。结果表明:前缘气动滑片可有效提高翼型上仰过程中的气动性能,较原始翼型气动滑片翼型的平均升力系数提高24.2%、阻力系数降低11.7%;翼型上仰过程中,气动滑片可抑制前缘分离涡向尾缘发展,延缓前缘与尾缘分离涡的融合,阻止分离涡从翼型表面脱落;气动滑片并未增加翼型噪声水平,但降低了翼型尾缘压力功率谱主频;当改变翼型折合频率时,气动滑片翼型的总声压级与原始翼型保持一致。  相似文献   

18.
采用数值模拟方法研究襟翼改型对S809翼型气动特性的影响,并对襟翼的增升机理进行探讨。研究结果表明,在中小攻角范围内,安装角度为90°和60°的襟翼具有一定的增升效果,可使最大升力系数分别提高5.66%和3.95%;通过分析翼型压力系数分布,发现尾缘附近压力面压力变大,导致升力系数提高;但是在大攻角下改型襟翼导致升力系数减小。  相似文献   

19.
为分析齿形襟翼(SGF)尾缘对风力机翼型气动性能及噪声特性的影响,利用SST k-ω湍流模型对装设Gurney襟翼(GF)和SGF的NACA0018翼型进行数值模拟,研究齿高和齿宽对气动性能和静压分布的影响,并采用大涡模拟(LES)对气动性能最优的SGF进行噪声预估和涡结构分析。结果表明:SGF可有效提高翼型升力系数并延迟失速;SGF-0.8-6.7模型可使最大升阻比提高8.61%,失速攻角延迟3°,其在拓宽高升力区间、延迟失速等方面具有最优性能;SGF翼型上下翼面噪声无明显差异,平均声压级随攻角增大而提高;SGF-0.8-6.7模型的尾迹噪声随攻角增大呈现先增后减的变化趋势,随距离增加而降低;翼型辐射噪声呈典型偶极子状,GF噪声小攻角下降低,而大攻角下则增大,SGF在不同攻角下均降噪显著,最大降噪量达10.2 dB;SGF尾涡稳定有序,能耗及损失降低,由此使气动性能和噪声得以明显改善。  相似文献   

20.
针对经典的S809翼型,耦合基于低速预处理的流场求解方法和序列二次规划方法,开展针对翼型升阻比的翼型气动外形优化设计研究。优化结果显示优化翼型具有较大的翼型前缘半径和较平坦的上表面。数值计算结果表明,优化翼型在设计点1的状态下升阻比提高43.3%,在设计点2的状态下升阻比提高48.9%。进一步数值验证表明,优化翼型在雷诺数为5.0×105状态下的最大升力系数从S809翼型的1.140增大到1.297,在雷诺数为1.0×106状态下的最大升力系数从1.236增大到1.418。在优化翼型的基础上,开展翼型气动外形人工修型研究,数值模拟表明修型翼型能更好地消除气流分离,从而进一步增大翼型升力系数、减小翼型阻力系数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号