首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
This paper investigates the effects of hydrogen additions on spontaneous ignition of high-pressure hydrogen released into hydrogen-air mixture. Hydrogen and air are premixed with different volume concentrations (0%, 5%, 10%, 15% and 20% H2) in the tube before high-pressure hydrogen is suddenly released. Pressure transducers are employed to detect the shock waves, estimate the mean shock wave speed and record the shock wave overpressure. Light sensors are used to determine the occurrence of high-pressure hydrogen spontaneous ignition in the tube. A high-speed camera is used to capture the flame propagation behavior outside the tube. It is found that only 5% hydrogen addition could decrease the minimum storage pressure required for spontaneous ignition from 4.37 MPa to 2.78 MPa significantly. When 10% or 15% hydrogen is added to the air, the minimum storage pressure decreases to 2.81 MPa and 1.85 MPa, respectively. When hydrogen addition increases to 20%, the spontaneous ignition even takes place at burst pressure as low as 1.79 MPa inside the straight tube.  相似文献   

2.
运用扩散点火理论对高压氢气泄漏到下游管道内的自燃点火情况进行了分析。利用激波管流动理论讨论了氢气射流前端激波加热区域的参数变化情况,分析了前沿激波强度、均匀区压力和温度与初始压力的关系,给出了高压氢气泄漏到下游管道后,预测前沿激波强度、均匀区压力和温度的数学方程,建立了判断高压氢气泄漏到下游管道内是否发生自燃点火的函数表达式。提出了理论点火临界压力的概念,计算发现氢气的理论点火临界压力明显低于其他几种常见的气体燃料。讨论了影响泄漏自燃发生的可能因素,结果可为预防高压储氢泄漏自燃提供科学依据。  相似文献   

3.
The shock wave dynamics, spontaneous ignition and flame variation during high-pressure hydrogen release through tubes with different cross-section shapes are experimentally studied. Tubes with square, pentagon and circular cross-section shapes are considered in the experiments. The experimental results show that the cross-section shape of the tube has no great difference on the minimum burst pressure for spontaneous ignition in our tests. In the three tubes with length of 300 mm, spontaneous ignition may occur when overpressure of shock wave is 0.9 MPa. When the spontaneous ignition is induced in a non-circular cross-section tube, the possible turbulent flow in the corner of the tube increases can promote the mixing of hydrogen and air, thus producing more amount of the hydrogen/air mixture. As a result, both the peak light signal and flame duration detected in the non-circular cross-section tubes are more intense than those in the circular tube. The smaller angle of the corner leads to a more intensity flame inside tube. When the hydrogen flame propagates to the tube exit from the circular tube, the ball-like flame developed near tube exit is relatively weak. In addition, second flame separation outside the tube is observed for the cases of non-circular cross-section tubes.  相似文献   

4.
Hydrogen is expected to be an alternative energy carrier in the future. High-pressure hydrogen storage option is considered as the best choice. However, spontaneous ignition tends to occur if hydrogen is suddenly released from a high-pressure tank into a tube. In order to improve the safety of hydrogen application, an experimental investigation on effects of CO2 additions (5%, 10% and 15% volume concentration) on the spontaneous ignition of high-pressure hydrogen during its sudden expansion inside the tube has been conducted. Pressure transducers are used to record the pressure variation and light sensors are employed to detect the possible spontaneous ignition. It is found that the shock wave overpressure and the mean shock wave speed are almost the same inside the tube for different CO2 additions under the close burst pressures. For cases with more CO2 additions, the ignition detected time is longer and the average speed of the flame, the maximum value of light signals and the detected duration time of spontaneous ignition are smaller. It is shown that minimum burst pressure required for spontaneous ignition increase 1.47 times for 15% CO2 additions. The minimum burst pressure required for spontaneous ignition increases from 4.37 MPa (0% CO2) up to 6.41 MPa (15% CO2). With the increasing of CO2 additions, it requires longer distance and longer time for hydrogen and oxygen to mix and thus longer ignition delay distance/time. The results showed that additions of CO2 to air have a good suppressing effect on hydrogen spontaneous ignition.  相似文献   

5.
A high-pressure hydrogen jet released into the air has the possibility of igniting in a tube without any ignition source. The mechanism of this phenomenon, called spontaneous ignition, is considered to be that hydrogen diffuses into the hot air caused by the shock wave from diaphragm rupture and the hydrogen-oxidizer mixed region is formed enough to start chemical reaction. Recently, flow visualization studies on the spontaneous ignition process have been conducted to understand its detailed mechanism, but such ignition has not yet been well clarified. In this study, the spontaneous ignition phenomenon was observed in a rectangular tube. The results confirm the presence of a flame at the wall of the tube when the shock wave pressure reaches 1.2–1.5 MPa in more than 9 MPa burst pressure and that ignition occurs near the wall, followed by multiple ignitions as the shock wave propagates, with the ignitions eventually combining to form a flame.  相似文献   

6.
The tendency of spontaneous ignition of high-pressure hydrogen during its sudden release into a tube is one of the main threats to the safe application of hydrogen energy. A series of investigations have shown that the tube structure is a key factor affecting the spontaneous ignition of high-pressure hydrogen. In this paper, a numerical study is conducted to reveal the mechanism of spontaneous ignition of high-pressure hydrogen inside the tube with local contraction. Large Eddy Simulation, Renormalization Group, Eddy Dissipation Concept, 37-step detailed hydrogen combustion mechanism and 10-step like opening process of burst disk are employed. Three cases with burst pressures of 3.10, 4.90, and 8.45 MPa are simulated to compare against the pervious experimental study. The spontaneous conditions and positions agree well with the experimental results. The numerical results indicate that shock wave reflection takes place at the upstream vertical wall of contraction part. The interacted-shock-affected region is generated at the tube center because of the subsequent shock wave interaction. The forward reflected shock wave couples with normal shock wave and increases the pressure of leading shock wave. The sudden contraction of tube blocks the propagation of hydrogen jet and decreases the speed from supersonic flow to subsonic flow. More flammable mixture is generated inside the contraction part, as a results, the length of the flame is increased. Two mechanisms are proposed finally.  相似文献   

7.
To investigate the effects of the geometry of downstream pipes on the shock ignition and the formation of the shock waves during high-pressure hydrogen sudden expansion, a series of bench-mark experiments were designed and high-pressure hydrogen were released into five types of pipes with different angles (60, 90, 120, 150 and 180°). It was found that the geometry of downstream pipes had a significant influence on the shock ignition of hydrogen. The incident shock wave would be reflected at the corner of the pipes with angles of 60, 90, 120 and 150°. The intensity of the reflected shock wave is higher if the angle is smaller. In addition, the average velocity of the leading incident shock wave would decrease when it passed the corner of the pipe. Using a pipe with smaller angle significantly increases the likelihood of shock ignition and lowers the minimal required burst pressure for shock ignition. The overpressure of the incident shock waves inside the exhaust chamber (for the cases with the angles of 60, 90, 120 and 150°) decreases sharply. There are three flame propagation behaviors inside the exhaust chamber: flame quenching, flame separation and no flame separation. The results of this study have implications concerning designs for storage safety of hydrogen energy and may help get better understanding of shock ignition mechanism of high pressure hydrogen and effect of pipeline geometry on ignition.  相似文献   

8.
Spontaneous ignition processes due to high pressure hydrogen releases into air are known phenomena. The sudden expansion of pressurized hydrogen into a pipe, filled with ambient air, can lead to a spontaneous ignition with a jet fire. This paper presents results of an experimental investigation of the visible flame propagation and pressure measurements in 4 mm extension tubes of up to 1 m length attached to a bulk vessel by a rupture disc. Transparent glass tubes for visual observation and shock wave pressure sensors are used in this study. The effect of the extension tube length on the development of a stable jet fire after a spontaneous ignition is discussed.  相似文献   

9.
Hydrogen is efficient and environmentally friendly, but the danger of self-ignition resulted from the leakage of high-pressure hydrogen cannot be ignored. In this work, the self-ignition of high-pressure hydrogen released through different conditions was studied. 700-mm-length tubes with different diameters were adopted in our experiments. It summarized the characteristics of shock waves' attenuation and evolution process of hydrogen jets in tubes. In addition, effects of the boundary layer on the leading shock waves, the contact surface, and expansion waves were discussed. Results indicate that minimum pressure when self-ignition occurs for 15-mm-diameter tube is similar to 10-mm-diameter. And they have closely velocity of shock waves. Simulations show that the greater the release pressure, the more ignition products of hydrogen. Higher release pressure and smaller diameter can create a thicker boundary layer in micro shock tubes, and the boundary layer can lead to a change in the velocity of shock waves’ structures.  相似文献   

10.
A two-dimensional (2-D) simulation of spontaneous ignition of high-pressure hydrogen in a length of duct is conducted to explore ignition mechanisms. The present study adopts a 2-D rectangular duct and focuses on effects of the initial diaphragm shape on spontaneous ignition. The Navier–Stokes equations with a detailed chemical kinetics mechanism are solved in a manner of direct numerical simulation. The detailed mechanisms of spontaneous ignitions are discussed for each initial diaphragm shape. For a straight diaphragm, ignition only occurs near the wall owing to the adiabatic wall condition, while three ignition events are identified for a greatly deformed diaphragm: ignition due to reflection of leading shock wave at the wall, hydrogen penetration into shock-heated air near the wall, and deep penetration of hydrogen into shock-heated air behind the leading shock wave.  相似文献   

11.
Spontaneous ignition induced by high-pressure hydrogen release is one of the huge potential risks in the promotion of hydrogen energy. However, the understanding of the microscopic dynamic characteristics of spontaneous ignition, such as ignition initiation and flame development, remains unresolved. In this paper, the spontaneous ignition caused by high-pressure hydrogen release through a tube is investigated by two-dimensional numerical simulation at burst pressure ranging from 2.67 to 15 MPa. Especially, the thermal and species characteristics in hydrogen shock-induced ignition under different strengths of shock wave are discussed carefully. The results show that the stronger shock wave caused by higher burst pressure leads to larger heating area and higher heating temperature inside the tube, increasing the possibility of spontaneous ignition. The shortening effect of initial ignition time and initial ignition distance will decrease with the increase of the burst pressure. Ignition will be initiated when the temperature is raised to about 1350–1400 K under the heating effect of shock waves. It is also found that the ignition occurs under the lean-fuel condition firstly on the upper and lower walls of the tube. The flame branch after spontaneous ignition is observed in the mixing layer. Two ignition kernels show different characteristics during the process of combustion and flow. The evolution of HRR and mass fraction of key species (OH, H, HO2) are also compared to identify the flame front. The mass fraction of H has the better trend with HRR. It is suggested that H radical is a more reasonable choice as the indicator of the flame front.  相似文献   

12.
The aim of this study is to gain an insight into the physical phenomena underlying the spontaneous ignition of hydrogen following a sudden release from high-pressure storage and transition to sustained jet fire. The modelling and large-eddy simulation (LES) of the spontaneous ignition dynamics in a tube with a non-inertial rupture disk separating the high-pressure hydrogen storage and the atmosphere is described. Numerical experiments confirmed that due to the stagnation conditions a chemical reaction first commences in the tube boundary layer, and subsequently propagates throughout the tube cross-section. The dynamics of flame formation outside the tube, simulated by the LES model, has reproduced the combustion patterns, including vortex induced “flame separation”, which have been experimentally observed by high-speed photography. It is concluded that the LES model can be applied for hydrogen safety engineering, e.g. for the development of innovative pressure relief devices.  相似文献   

13.
This paper demonstrates experimental and numerical study on spontaneous ignition of H2–N2 mixtures during high-pressure release into air through the tubes of various diameters and lengths. The mixtures included 5% and 10% (vol.) N2 addition to hydrogen being at initial pressure in range of 4.3–15.9 MPa. As a point of reference pure hydrogen release experiments were performed with use of the same experimental stand, experimental procedure and extension tubes. The results showed that N2 addition may increase the initial pressure necessary to self-ignite the mixture as much as 2.12 or 2.85 – times for 5% and 10% N2 addition, respectively. Additionally, simulations were performed with use of Cantera code (0-D) based on the ideal shock tube assumption and with the modified KIVA3V code (2-D) to establish the main factors responsible for ignition and sustained combustion during the release.  相似文献   

14.
Self-ignition may occur during hydrogen storage and transportation if high-pressure hydrogen is suddenly released into the downstream pipelines, and the presence of obstacles inside the pipeline may affect the ignition mechanism of high-pressure hydrogen. In this work, the effects of multiple obstacles inside the tube on the shock wave propagation and self-ignition during high-pressure hydrogen release are investigated by numerical simulation. The RNG k-ε turbulence model, EDC combustion model, and 19-step detailed hydrogen combustion mechanism are employed. After verifying the reliability of the model with experimental data, the self-ignition process of high-pressure hydrogen release into tubes with obstacles with different locations, spacings, shapes, and blockage ratios is numerically investigated. The results show that obstacles with different locations, spacings, shapes and blockage ratios will generate reflected shock waves with different sizes and propagation trends. The closer the location of obstacles to the burst disk, the smaller the spacing, and the larger the blockage ratio will cause the greater the pressure of the reflected shock wave it produces. Compared with the tubes with rectangular-shaped, semi-circular-shaped and triangular-shaped obstacles, self-ignition is preferred to occur in tube with triangular-shaped obstacles.  相似文献   

15.
Hydrogen is expected to serve as a clean energy carrier. However, since there are serious ignition hazards associated with its use, it is necessary to collect data on safety in a range of possible accident scenarios so as to assess hazards and develop mitigation measures. When high-pressure hydrogen is suddenly released into the air, a shock wave is produced, which compresses the air and mixes it with hydrogen at the contact surface. This leads to an increase in the temperature of the hydrogen–air mixture, thereby increasing the possibility of ignition. We investigated the phenomena of ignition and flame propagation during the release of high-pressure hydrogen. When a hydrogen jet flame is produced by self-ignition, the flame is held at the pipe outlet and a hydrogen jet flame is produced. From the experiment using the measurement pipe, the presence of a flame in the pipe is confirmed; further, when the burst pressure increased, the flame may be detected at a position near the diaphragm. At the pipe outlet, the flame is not lifted and self-ignition is initiated at the outer edge of the jet.  相似文献   

16.
Recent experimental observations have shown that pressurized hydrogen may be spontaneously ignited in downstream tubes of sufficient length when it is released into the air due to the rapid failure of a pressure boundary. The mixing between hydrogen and shocked air within the downstream tubes is speculated to be a key process for the occurrence of spontaneous ignition of hydrogen. A direct numerical simulation has been conducted to analyze the processes of mixing and of spontaneous ignition of hydrogen within a tube after the rupture of a disk at a bursting pressure of 86.1 atm. A realistic assumption of the geometry of the pressure boundary at the moment of its failure is used for the initial condition of the numerical simulation to properly account for its effect on the mixing process. The present simulation results show that the mixing of shocked air and expanding hydrogen is enhanced by the transient multi-dimensional shock initiated by the failure of a rupture disk and by the following interactions during the flow development through the tube, thus causing spontaneous ignition of hydrogen within the tube.  相似文献   

17.
This paper describes hydrogen self-ignition as a result of the formation of a shock wave in front of a high-pressure hydrogen gas propagating in the tube and in the semi-confined space, for which the numerical and experimental investigation was done. An increase in the temperature behind the shock wave leads to the ignition on the contact surface of the mixture of combustible gas with air. The required condition of combustible self-ignition is to maintain the high temperature in the mixture for a time long enough for inflammation to take place. Experimental technique was based on a high-pressure chamber inflating with hydrogen, burst disk failure and pressurized hydrogen discharge into tube of round or rectangular cross section filled with air. Two numerical models involving the gas-dynamic transport of a viscous gas, the detailed kinetics of hydrogen oxidation, turbulence model, and heat exchange were used for calculations of the hydrogen self-ignition both in semi-confined space and a tube.  相似文献   

18.
This paper describes a large eddy simulation model of hydrogen spontaneous ignition in a T-shaped channel filled with air following an inertial flat burst disk rupture. This is the first time when 3D simulations of the phenomenon are performed and reproduced experimental results by Golub et al. (2010). The eddy dissipation concept with a full hydrogen oxidation in air scheme is applied as a sub-grid scale combustion model to enable use of a comparatively coarse grid to undertake 3D simulations. The renormalization group theory is used for sub-grid scale turbulence modelling. Simulation results are compared against test data on hydrogen release into a T-shaped channel at pressure 1.2–2.9 MPa and helped to explain experimental observations. Transitional phenomena of hydrogen ignition and self-extinction at the lower pressure limit are simulated for a range of storage pressure. It is shown that there is no ignition at storage pressure of 1.35 MPa. Sudden release at pressure 1.65 MPa and 2.43 MPa has a localised spot ignition of a hydrogen-air mixture that quickly self-extinguishes. There is an ignition and development of combustion in a flammable mixture cocoon outside the T-shaped channel only at the highest simulated pressure of 2.9 MPa. Both simulated phenomena, i.e. the initiation of chemical reactions followed by the extinction, and the progressive development of combustion in the T-shape channel and outside, have provided an insight into interpretation of the experimental data. The model can be used as a tool for hydrogen safety engineering in particular for development of innovative pressure relief devices with controlled ignition.  相似文献   

19.
This paper is an investigation of the spontaneous ignition process of high-pressure hydrogen and hydrogen-methane mixtures injected into air. The experiments were conducted in a closed channel filled with air where the hydrogen or hydrogen–methane mixture depressurised through different tubes (diameters d = 6, 10, and 14 mm, and lengths L = 10, 25, 40, 50, 75 and 100 mm). The methane addition to the mixture was 5% and 10% vol. The results showed that only 5% methane addition may increase even 2.67 times the pressure at which the mixture may ignite in comparison to the pressure of the pure hydrogen flow. The 10% of methane addition did not provide an ignition for burst pressures up to 15.0 MPa in the geometrical configuration with the longest tube (100 mm). Additionally, the simulations of the experimental configuration with pure hydrogen were performed with the use of KIVA numerical code with full kinetic reaction mechanism.  相似文献   

20.
A series of experiments were conducted to study the pressure and combustion characteristics of the high-pressure hydrogen during the occurrence of spontaneous ignition and the conversion from spontaneous ignition to a jet fire and explosion. Different initial conditions including release pressure (4–10 MPa), tube diameter (10/15 mm), and tube length (0.3/0.7/1.2/1.7/2.2/3 m) were tested. The variation of the pressure and flame signal inside and outside of the tube and the development of the jet flame were recorded. The experimental results revealed that the minimum ignition pressure required for self-ignition of hydrogen at different tube diameters decreased first and then increased with the extension of tubes. The minimum ignition pressure for tubes diameters of 10 mm and 15 mm is no more than 4 MPa and the length of the tubes is L = 1.7 m. The minimum release pressure required for spontaneous ignition of a tube D = 15 mm is always lower than that of a tube D = 10 mm at the same tube length. When the spontaneous ignition occurred, it did not absolutely trigger the jet fire. The transition from spontaneous ignition to a jet fire must go through the specific stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号