首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen is expected to be an alternative energy carrier in the future. High-pressure hydrogen storage option is considered as the best choice. However, spontaneous ignition tends to occur if hydrogen is suddenly released from a high-pressure tank into a tube. In order to improve the safety of hydrogen application, an experimental investigation on effects of CO2 additions (5%, 10% and 15% volume concentration) on the spontaneous ignition of high-pressure hydrogen during its sudden expansion inside the tube has been conducted. Pressure transducers are used to record the pressure variation and light sensors are employed to detect the possible spontaneous ignition. It is found that the shock wave overpressure and the mean shock wave speed are almost the same inside the tube for different CO2 additions under the close burst pressures. For cases with more CO2 additions, the ignition detected time is longer and the average speed of the flame, the maximum value of light signals and the detected duration time of spontaneous ignition are smaller. It is shown that minimum burst pressure required for spontaneous ignition increase 1.47 times for 15% CO2 additions. The minimum burst pressure required for spontaneous ignition increases from 4.37 MPa (0% CO2) up to 6.41 MPa (15% CO2). With the increasing of CO2 additions, it requires longer distance and longer time for hydrogen and oxygen to mix and thus longer ignition delay distance/time. The results showed that additions of CO2 to air have a good suppressing effect on hydrogen spontaneous ignition.  相似文献   

2.
A high-pressure hydrogen jet released into the air has the possibility of igniting in a tube without any ignition source. The mechanism of this phenomenon, called spontaneous ignition, is considered to be that hydrogen diffuses into the hot air caused by the shock wave from diaphragm rupture and the hydrogen-oxidizer mixed region is formed enough to start chemical reaction. Recently, flow visualization studies on the spontaneous ignition process have been conducted to understand its detailed mechanism, but such ignition has not yet been well clarified. In this study, the spontaneous ignition phenomenon was observed in a rectangular tube. The results confirm the presence of a flame at the wall of the tube when the shock wave pressure reaches 1.2–1.5 MPa in more than 9 MPa burst pressure and that ignition occurs near the wall, followed by multiple ignitions as the shock wave propagates, with the ignitions eventually combining to form a flame.  相似文献   

3.
The shock wave dynamics, spontaneous ignition and flame variation during high-pressure hydrogen release through tubes with different cross-section shapes are experimentally studied. Tubes with square, pentagon and circular cross-section shapes are considered in the experiments. The experimental results show that the cross-section shape of the tube has no great difference on the minimum burst pressure for spontaneous ignition in our tests. In the three tubes with length of 300 mm, spontaneous ignition may occur when overpressure of shock wave is 0.9 MPa. When the spontaneous ignition is induced in a non-circular cross-section tube, the possible turbulent flow in the corner of the tube increases can promote the mixing of hydrogen and air, thus producing more amount of the hydrogen/air mixture. As a result, both the peak light signal and flame duration detected in the non-circular cross-section tubes are more intense than those in the circular tube. The smaller angle of the corner leads to a more intensity flame inside tube. When the hydrogen flame propagates to the tube exit from the circular tube, the ball-like flame developed near tube exit is relatively weak. In addition, second flame separation outside the tube is observed for the cases of non-circular cross-section tubes.  相似文献   

4.
Increasing hydrogen storage pressure brings high economic benefits and high risks. Pressurized hydrogen leakage spontaneous ignition experiment is an important means to reveal the mechanism of hydrogen leakage spontaneous ignition and improve the safety of hydrogen storage equipment. However, due to the extremely high cost and danger of ultra-high pressure, there is a serious lack of experimental data. In this paper, a pressure-ratio equivalent (PRE) method of experiments is proposed based on the theory of the shock tube problem. By keeping the hydrogen-air pressure ratio constant while reducing the absolute pressure of air and hydrogen, the difficulty of the experiment is greatly reduced. The effectiveness of the PRE method is evaluated theoretically and experimentally. The results show the PRE method retains the ignition characteristics of hydrogen leakage spontaneous ignition largely when the air pressure is within 0.05–0.1 MPa. It is found the pressure ratio of hydrogen to air dominates the leakage spontaneous ignition process. In the experiments of different air pressures, the shock Mach numbers are close to theoretical values. In addition, leakage spontaneous ignition of hydrogen mixed with 30% (vol.) CO is found in experiments using the PRE method, with pressure ratios of up to 250. This indicates that when the storage pressure is high enough, there is also a risk of spontaneous ignition of syngas from high-pressure leakage. The PRE method can widely broaden the pressure scope of experimental research on leakage spontaneous ignition, and it provides a new idea for obtaining the experimental data of gas high-pressure leakage spontaneous ignition.  相似文献   

5.
运用扩散点火理论对高压氢气泄漏到下游管道内的自燃点火情况进行了分析。利用激波管流动理论讨论了氢气射流前端激波加热区域的参数变化情况,分析了前沿激波强度、均匀区压力和温度与初始压力的关系,给出了高压氢气泄漏到下游管道后,预测前沿激波强度、均匀区压力和温度的数学方程,建立了判断高压氢气泄漏到下游管道内是否发生自燃点火的函数表达式。提出了理论点火临界压力的概念,计算发现氢气的理论点火临界压力明显低于其他几种常见的气体燃料。讨论了影响泄漏自燃发生的可能因素,结果可为预防高压储氢泄漏自燃提供科学依据。  相似文献   

6.
Spontaneous ignition induced by high-pressure hydrogen release is one of the huge potential risks in the promotion of hydrogen energy. However, the understanding of the microscopic dynamic characteristics of spontaneous ignition, such as ignition initiation and flame development, remains unresolved. In this paper, the spontaneous ignition caused by high-pressure hydrogen release through a tube is investigated by two-dimensional numerical simulation at burst pressure ranging from 2.67 to 15 MPa. Especially, the thermal and species characteristics in hydrogen shock-induced ignition under different strengths of shock wave are discussed carefully. The results show that the stronger shock wave caused by higher burst pressure leads to larger heating area and higher heating temperature inside the tube, increasing the possibility of spontaneous ignition. The shortening effect of initial ignition time and initial ignition distance will decrease with the increase of the burst pressure. Ignition will be initiated when the temperature is raised to about 1350–1400 K under the heating effect of shock waves. It is also found that the ignition occurs under the lean-fuel condition firstly on the upper and lower walls of the tube. The flame branch after spontaneous ignition is observed in the mixing layer. Two ignition kernels show different characteristics during the process of combustion and flow. The evolution of HRR and mass fraction of key species (OH, H, HO2) are also compared to identify the flame front. The mass fraction of H has the better trend with HRR. It is suggested that H radical is a more reasonable choice as the indicator of the flame front.  相似文献   

7.
Experiments on shock waves propagation, spontaneous ignition, and flame development during high-pressure hydrogen release through tubes with symmetrical obstacles (O1-1) and asymmetrical obstacles (O1-2) are conducted. The obstacle's side is triangular with a length of 4 mm, a height of 3.6 mm, and its width is 15 mm. In the experiments, a reflected shock wave generates and propagates both upstream and downstream when the leading shock wave encounters the obstacle. At the same burst pressure, the reflected shock wave intensity in tube O1-1 is significantly greater than that in tube O1-2. Moreover, the presence of obstacles in the tube can induce spontaneous ignition. The minimum burst pressures for spontaneous ignition for tubes O1-1 and O1-2 are 2.84 MPa and 3.28 MPa respectively, lower than that for the smooth tube. Furthermore, both the initial ignition position and ignition time are greatly advanced in obstruction tubes, mainly affected by obstacle positions and burst pressures. Finally, the flame separation process near the obstacle is observed. After passing the obstacle, the flames grow rapidly in radial and axial directions on the tube sidewalls. And at the same burst pressure, the flame convergence time in tube O1-2 is usually longer than that in tube O1-1.  相似文献   

8.
A series of experiments were conducted to study the pressure and combustion characteristics of the high-pressure hydrogen during the occurrence of spontaneous ignition and the conversion from spontaneous ignition to a jet fire and explosion. Different initial conditions including release pressure (4–10 MPa), tube diameter (10/15 mm), and tube length (0.3/0.7/1.2/1.7/2.2/3 m) were tested. The variation of the pressure and flame signal inside and outside of the tube and the development of the jet flame were recorded. The experimental results revealed that the minimum ignition pressure required for self-ignition of hydrogen at different tube diameters decreased first and then increased with the extension of tubes. The minimum ignition pressure for tubes diameters of 10 mm and 15 mm is no more than 4 MPa and the length of the tubes is L = 1.7 m. The minimum release pressure required for spontaneous ignition of a tube D = 15 mm is always lower than that of a tube D = 10 mm at the same tube length. When the spontaneous ignition occurred, it did not absolutely trigger the jet fire. The transition from spontaneous ignition to a jet fire must go through the specific stages.  相似文献   

9.
The tendency of spontaneous ignition of high-pressure hydrogen during its sudden release into a tube is one of the main threats to the safe application of hydrogen energy. A series of investigations have shown that the tube structure is a key factor affecting the spontaneous ignition of high-pressure hydrogen. In this paper, a numerical study is conducted to reveal the mechanism of spontaneous ignition of high-pressure hydrogen inside the tube with local contraction. Large Eddy Simulation, Renormalization Group, Eddy Dissipation Concept, 37-step detailed hydrogen combustion mechanism and 10-step like opening process of burst disk are employed. Three cases with burst pressures of 3.10, 4.90, and 8.45 MPa are simulated to compare against the pervious experimental study. The spontaneous conditions and positions agree well with the experimental results. The numerical results indicate that shock wave reflection takes place at the upstream vertical wall of contraction part. The interacted-shock-affected region is generated at the tube center because of the subsequent shock wave interaction. The forward reflected shock wave couples with normal shock wave and increases the pressure of leading shock wave. The sudden contraction of tube blocks the propagation of hydrogen jet and decreases the speed from supersonic flow to subsonic flow. More flammable mixture is generated inside the contraction part, as a results, the length of the flame is increased. Two mechanisms are proposed finally.  相似文献   

10.
An experimental study of shock wave propagation and its influence on the spontaneous ignition during high-pressure hydrogen release through a tube are measured by pressure transducers and light sensors. Results show that the pressure behind a shock wave first increases, and subsequently remains near constant value with an increase of the propagation distance. That is, a certain propagation distance is required to form a stable shock wave in the tube. In the front of the tube, the minimum value of pressure behind the shock wave (Pshock) required for spontaneous ignition decreases with the increase in axial distance to the diaphragm. However, the minimum Pshock remains nearly a constant value in the rear part of the tube. Moreover, the critical values of shock Mach number (MS) for spontaneous ignition decrease with the increase in tube length. And the ignition delay time decreases with the increase of the MS. As the ignition kernel grows in size to a flame, it propagates downstream along the tube with velocity greater than the theoretical flow velocity of the hydrogen-air contact surface. The flame propagation velocity relative to tube wall increases with MS. When the self-sustained flame exits from the tube, a rapid non-premixed turbulent combustion is observed in the chamber. The combustion-wave overpressure increases with the increase of the MS.  相似文献   

11.
This paper demonstrates experimental and numerical study on spontaneous ignition of H2–N2 mixtures during high-pressure release into air through the tubes of various diameters and lengths. The mixtures included 5% and 10% (vol.) N2 addition to hydrogen being at initial pressure in range of 4.3–15.9 MPa. As a point of reference pure hydrogen release experiments were performed with use of the same experimental stand, experimental procedure and extension tubes. The results showed that N2 addition may increase the initial pressure necessary to self-ignite the mixture as much as 2.12 or 2.85 – times for 5% and 10% N2 addition, respectively. Additionally, simulations were performed with use of Cantera code (0-D) based on the ideal shock tube assumption and with the modified KIVA3V code (2-D) to establish the main factors responsible for ignition and sustained combustion during the release.  相似文献   

12.
High-pressure hydrogen leak is one of the top safety issues presently. This study elucidates numerically the physics and mechanism of high-pressure hydrogen jet ignition when the hydrogen suddenly spouts into the air through a tube. The direct numerical simulation based on the compressible fluid dynamics was carried out. When high-pressure hydrogen is passing through the tube filled by atmospheric air, a strong shock wave is formed and heats up hydrogen behind the shock wave by compression effect. The leading shock wave is expanded widely after the tube exit, auto-ignitions of hydrogen occur. When the tube becomes longer, the tendency of auto-ignition is increased. Other type of auto-ignitions is also predicted. An explosion is also occurred in the tube under a certain condition. Vortices are generated behind the shock wave in a long tube. There is a possibility of an auto-ignition induced by vortices.  相似文献   

13.
An experimental study was conducted to research the mechanism of spontaneous ignition induced by high-pressure hydrogen release through tubes with a diameter of 10 mm and varying lengths from 0.3 to 3 m. The pressure and light signals inside the tube were collected. The propagation of shock wave inside and outside the tube was also systematically investigated. The development process of the jet flame in the atmosphere was completely recorded, and the multiple Mach disks at the tube exit were observed by using a high-speed camera. The results show that the minimum release pressure, at which the jet flame is formed, is found to be 3.87 MPa with the tube length of 1.7 m. When the tube length was longer than 1.7 m, the critical pressure for forming jet flame increased rapidly. The velocity attenuation of the shock wave is mainly affected by the burst pressure but not sensitive to the tube length, and the flame propagates in the tube at a slower velocity than the shock wave. The compression of the hydrogen-air mixture by the Mach disk causes it to burn more violently after passing through the Mach disk. It is confirmed that the flame at the tube exit is lifted in the atmosphere, then a jet flame initiates behind the second Mach disk.  相似文献   

14.
This paper demonstrates experimental investigation on the self-ignition and subsequent flame propagation of high-pressure hydrogen-methane mixture release via a tube. The proportion of methane added to hydrogen is 2.5% (vol.). A transparent rectangular tube (d = 15 mm, L = 400 mm) is used in the experiments. It is shown that the minimum burst pressure required for self-ignition increases 1.57 times for only 2.5% methane addition from 2.89 MPa (pure hydrogen) up to 4.68 MPa (2.5% CH4 addition). This is mainly caused by the following reasons: on the one hand, methane addition can result in the decease of shock intensity inside the tube, thereby lowering the temperature of the combustible mixture; on the other hand, the hydrogen-methane mixture has the higher minimum ignition energy than that of pure hydrogen. Besides, 2.5% methane addition can increase the initial ignition time, weaken the flame intensity and reduce the flame propagation velocity relative to tube wall inside the tube. Moreover, for cases with 2.5% methane addition, the complete flame throughout the tube is formed closer to the back end of the tube. When the self-sustained flame exits from the tube, the maximum overpressure in a confined space increases with 2.5% methane addition.  相似文献   

15.
To investigate the effects of the geometry of downstream pipes on the shock ignition and the formation of the shock waves during high-pressure hydrogen sudden expansion, a series of bench-mark experiments were designed and high-pressure hydrogen were released into five types of pipes with different angles (60, 90, 120, 150 and 180°). It was found that the geometry of downstream pipes had a significant influence on the shock ignition of hydrogen. The incident shock wave would be reflected at the corner of the pipes with angles of 60, 90, 120 and 150°. The intensity of the reflected shock wave is higher if the angle is smaller. In addition, the average velocity of the leading incident shock wave would decrease when it passed the corner of the pipe. Using a pipe with smaller angle significantly increases the likelihood of shock ignition and lowers the minimal required burst pressure for shock ignition. The overpressure of the incident shock waves inside the exhaust chamber (for the cases with the angles of 60, 90, 120 and 150°) decreases sharply. There are three flame propagation behaviors inside the exhaust chamber: flame quenching, flame separation and no flame separation. The results of this study have implications concerning designs for storage safety of hydrogen energy and may help get better understanding of shock ignition mechanism of high pressure hydrogen and effect of pipeline geometry on ignition.  相似文献   

16.
Hydrogen is efficient and environmentally friendly, but the danger of self-ignition resulted from the leakage of high-pressure hydrogen cannot be ignored. In this work, the self-ignition of high-pressure hydrogen released through different conditions was studied. 700-mm-length tubes with different diameters were adopted in our experiments. It summarized the characteristics of shock waves' attenuation and evolution process of hydrogen jets in tubes. In addition, effects of the boundary layer on the leading shock waves, the contact surface, and expansion waves were discussed. Results indicate that minimum pressure when self-ignition occurs for 15-mm-diameter tube is similar to 10-mm-diameter. And they have closely velocity of shock waves. Simulations show that the greater the release pressure, the more ignition products of hydrogen. Higher release pressure and smaller diameter can create a thicker boundary layer in micro shock tubes, and the boundary layer can lead to a change in the velocity of shock waves’ structures.  相似文献   

17.
Self-ignition may occur during hydrogen storage and transportation if high-pressure hydrogen is suddenly released into the downstream pipelines, and the presence of obstacles inside the pipeline may affect the ignition mechanism of high-pressure hydrogen. In this work, the effects of multiple obstacles inside the tube on the shock wave propagation and self-ignition during high-pressure hydrogen release are investigated by numerical simulation. The RNG k-ε turbulence model, EDC combustion model, and 19-step detailed hydrogen combustion mechanism are employed. After verifying the reliability of the model with experimental data, the self-ignition process of high-pressure hydrogen release into tubes with obstacles with different locations, spacings, shapes, and blockage ratios is numerically investigated. The results show that obstacles with different locations, spacings, shapes and blockage ratios will generate reflected shock waves with different sizes and propagation trends. The closer the location of obstacles to the burst disk, the smaller the spacing, and the larger the blockage ratio will cause the greater the pressure of the reflected shock wave it produces. Compared with the tubes with rectangular-shaped, semi-circular-shaped and triangular-shaped obstacles, self-ignition is preferred to occur in tube with triangular-shaped obstacles.  相似文献   

18.
Hydrogen is expected to serve as a clean energy carrier. However, since there are serious ignition hazards associated with its use, it is necessary to collect data on safety in a range of possible accident scenarios so as to assess hazards and develop mitigation measures. When high-pressure hydrogen is suddenly released into the air, a shock wave is produced, which compresses the air and mixes it with hydrogen at the contact surface. This leads to an increase in the temperature of the hydrogen–air mixture, thereby increasing the possibility of ignition. We investigated the phenomena of ignition and flame propagation during the release of high-pressure hydrogen. When a hydrogen jet flame is produced by self-ignition, the flame is held at the pipe outlet and a hydrogen jet flame is produced. From the experiment using the measurement pipe, the presence of a flame in the pipe is confirmed; further, when the burst pressure increased, the flame may be detected at a position near the diaphragm. At the pipe outlet, the flame is not lifted and self-ignition is initiated at the outer edge of the jet.  相似文献   

19.
A two-dimensional (2-D) simulation of spontaneous ignition of high-pressure hydrogen in a length of duct is conducted to explore ignition mechanisms. The present study adopts a 2-D rectangular duct and focuses on effects of the initial diaphragm shape on spontaneous ignition. The Navier–Stokes equations with a detailed chemical kinetics mechanism are solved in a manner of direct numerical simulation. The detailed mechanisms of spontaneous ignitions are discussed for each initial diaphragm shape. For a straight diaphragm, ignition only occurs near the wall owing to the adiabatic wall condition, while three ignition events are identified for a greatly deformed diaphragm: ignition due to reflection of leading shock wave at the wall, hydrogen penetration into shock-heated air near the wall, and deep penetration of hydrogen into shock-heated air behind the leading shock wave.  相似文献   

20.
Recent experimental observations have shown that pressurized hydrogen may be spontaneously ignited in downstream tubes of sufficient length when it is released into the air due to the rapid failure of a pressure boundary. The mixing between hydrogen and shocked air within the downstream tubes is speculated to be a key process for the occurrence of spontaneous ignition of hydrogen. A direct numerical simulation has been conducted to analyze the processes of mixing and of spontaneous ignition of hydrogen within a tube after the rupture of a disk at a bursting pressure of 86.1 atm. A realistic assumption of the geometry of the pressure boundary at the moment of its failure is used for the initial condition of the numerical simulation to properly account for its effect on the mixing process. The present simulation results show that the mixing of shocked air and expanding hydrogen is enhanced by the transient multi-dimensional shock initiated by the failure of a rupture disk and by the following interactions during the flow development through the tube, thus causing spontaneous ignition of hydrogen within the tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号