首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为了提高锅炉SNCR系统脱硝效率,本文利用化学动力学CHEMKIN软件,应用SNCR脱硝系统基元反应机理,对SNCR技术及含添加剂(CH4、H2)的SNCR脱硝过程进行数值模拟,以预测反应条件(温度、氨氮摩尔比、停留时间、烟气中初始NO浓度、烟气中的氧浓度)及添加剂(CH4、H2)对脱硝效率的影响及优化。通过CHEMKIN软件模拟及优化,能有效确定适合实际工程应用的反应温度窗口及还原剂氨的合适喷射量。  相似文献   

2.
对SNCR技术在CFB锅炉上还原反应的温度窗口、还原剂的停留时间、氨氮比(NSR)、以及烟气与还原剂的混合程度等关键因素进行了研究,分析CFB锅炉中还原剂与烟气中NOx的反应特性,并在此基础上开发了混合孔橄榄形扇形结构的气力式雾化喷枪,喷射距离在6 m以上,气耗率为5%时雾化粒度仅为20μm,对于SNCR技术在大型CFB锅炉脱硝系统中的工程应用具有重要意义。  相似文献   

3.
以醋酸钠工业废盐减量化无害化处置为背景,利用携带流反应装置,研究了反应温度、Na含量、停留时间、氨氮比(NSR)以及烟气组分(NO、O_2、CO)浓度等氨水SNCR脱硝性能的影响。结果表明,在醋酸钠和醋酸钠工业废盐存在条件下,氨水SNCR脱硝效率随着反应温度升高呈现先增加后下降的趋势,两种Na盐添加剂均能有效拓宽氨水SNCR脱硝温度窗口,并使得窗口温度向低温方向偏移170℃,达到700~985℃。随着烟气中Na盐含量的提高,其氨水脱硝效率线性增加,当Na含量为150μmol/mol时,两种Na盐氨水脱硝效率可达到80%。在温度为800℃和Na含量为100μmol/mol下,随着停留时间、NO浓度和氨氮比的增加,氨水SNCR脱硝效率增加;随着O_2浓度的升高,氨水SNCR脱硝效率呈现先迅速升高后下降的趋势,但随着CO浓度的升高,脱硝效率则呈现先下降后上升的相反趋势。  相似文献   

4.
在沉降炉脱硝试验平台上,对不同氨剂的选择性非催化还原(SNCR)脱硝特性进行了试验研究.结果表明:反应适宜氨氮比为1.5,氨气、尿素、碳酸氢铵脱硝的最佳温度窗口分别为985~1 030℃、775~1 085℃、760~1 075℃,尿素和碳酸氢铵最大脱硝效率达90%,优于氨气的80%;增大氨氮比或降低烟气氧浓度均可提高SNCR脱硝效率;在以尿素作为还原剂的SNCR脱硝反应过程中,协同加入钠盐添加剂可在保证最大脱硝效率基本不变的前提下,使反应温度窗口由782.9~1 086.3℃拓宽为749.5~1 086.3℃.  相似文献   

5.
为给SNCR脱硝和烟气再循环联用工艺在煤泥循环流化床锅炉上的工程应用提供参考,在三台锅炉上进行了整套启动调试和168小时试运行,研究多种工艺参数对脱硝效率的影响。结果显示,氨氮摩尔比≤1.2、脱硝效率≤65%时通过增加氨水供应量可以迅速提高脱硝效率;SNCR应尽可能在850~950℃的最佳反应温度区间内运行,低于此区间时,单纯增加氨水供应量不能获得很好的补偿效果;应尽量将氨水喷枪布置在旋风分离器筒壁处,以强化NH3和烟气的混合效果;应至少保证喷枪的雾化空气压力不低于0.3 MPa,尽可能保持在0.4~0.6 MPa。经过优化后,采用SNCR与烟气再循环联合的工艺路线可以将总脱硝效率提高到80%以上。  相似文献   

6.
对一台300 MW循环流化床锅炉SNCR脱硝效率进行了试验研究,并对其内部流场及SNCR还原剂与烟气混合情况进行了CFD数值模拟,分析了速度、温度、氨蒸汽浓度的规律。结果表明,经过SNCR脱硝处理后,烟道内的氮氧化物浓度大幅度降低,脱硝效率达75.5%。由于烟气温度较高,氨水很快受热沸腾蒸发,在进口烟道内即可完全蒸发完毕。由于液滴粒径小、进口烟道流速高,还原剂液滴的穿透距离有限,不到1/2烟道深度。此喷枪布置方式下,旋风分离器外侧的氨浓度比内部稍高,经过1/2周长后,趋于混合均匀。  相似文献   

7.
提出了改进型(SNCR+ SCR)混合法脱硝工艺,建立了省煤器出口烟道NH3逃逸的摩尔分数分布模型和SCR入口烟道流场均流导流组件模块装置,基于Fluent平台,对大型燃煤锅炉改进型(SNCR+ SCR)混合脱硝工艺在锅炉转向角处还原剂液滴与烟气的混合过程进行数值模拟,并进一步掌握SNCR后段烟气流场的氨氮混合特性和分布特性,同时考虑了混合过程与复杂温度场的相互作用,并探讨了其对SCR反应段的脱硝效果影响.计算结果表明,在喷枪位置固定条件下,传统SNCR反应区脱硝效率在尿素溶液喷射初期随喷射量增加而增大,但不是线性关系,当氨氮物质的量之比大于1.15后,增长减缓,且氨逃逸量与增加的尿素溶液量也非线性关系,改进型工艺在转向角补充尿素溶液喷射后,省煤器出口NH3摩尔分数与补充尿素溶液流量呈线性关系,大大降低了尿素耗量,新型均流导流组件解决了SCR反应器入口界面的回流、二次流以及入射角过大问题,优化后催化剂入口界面烟气速度标准偏差小于10%,浓度场偏差小于5%,在(SNCR+ SCR)脱硝总效率70%条件下,综合考虑漏氨,氨氮物质的量之比可控制在1.5以下.最后通过应用该模型计算实际燃煤机组电厂运行反馈信息来验证数学模型的正确性和可靠性.  相似文献   

8.
为了降低氮氧化物的排放,循环流化床锅炉中通常采用SNCR脱硝系统,利用还原剂将烟气中的氮氧化物还原为无污染的氮气。SNCR脱硝系统的喷枪通常设置在分离器入口烟道,为了确保脱硝效率,须使还原剂与烟气充分混合。本文主要从按分离器为单元和按每层喷枪为单元,对循环流化床锅炉中SNCR系统控制流程进行分析,从系统的复杂程度与可靠性来对比两种控制流程的优缺点。  相似文献   

9.
《节能》2016,(9)
循环流化床是商业化运营最好的洁净煤发电技术,而CFB锅炉烟气污染物脱除是理论与实践亟需解决的又一技术难题。鉴于SNCR脱硝技术在燃煤电站脱硝市场的主导地位,对唐山东方电厂SNCR脱硝技术作出简要介绍,并结合东方电厂CFB锅炉脱硝设备的实际运行数据,讨论了影响脱硝效率的主要因素,认为脱硝系统参数优化的方案为CFB电站的优化设计和运行提供理论和技术支撑。  相似文献   

10.
在自行设计的选择性非催化还原(SNCR)脱硝试验台上,通过在还原剂中添加CO,研究了CO对SNCR脱硝工艺的影响,并利用Chemkin 4.1软件对试验工况进行了模拟.结果表明:改进型TB系列喷嘴采用中心逆喷方式可大大增强还原气体与主烟气的混合效果,明显优于工业上常用的侧喷方式,且不存在还原剂的催化分解问题;添加CO可使SNCR工艺的反应温度窗口降低并变宽;在低于875℃的条件下,添加CO有助于提高NO2的脱除效率,随着CO添加量的增加,既定温度下NOx的脱除效率先提高后降低,且随着温度的降低,达到NO相似文献   

11.
罗朝晖  王恩禄 《动力工程》2008,28(3):442-446
大型循环流化床(CFB)锅炉分离器区域采用选择性非催化还原(SNCR)脱硝技术可以实现燃煤锅炉的超低NOx排放.对分别选用氨水、纯氨及尿素作反应剂的SNCR脱硝系统的优缺点进行了比较.结合工程实践,给出了大型CFB锅炉上SNCR脱硝系统的选取原则.并指出:大型CFB锅炉SNCR脱硝系统一般采用氨作为反应剂.  相似文献   

12.
为了给大型燃煤锅炉采用选择性非催化还原(SNCR)脱硝技术提供参考和指导,本文借助计算流体力学软件平台Fluent,通过数值模拟的方法研究了一台600 MW燃煤锅炉上的SNCR脱硝过程。计算结果表明大型燃煤锅炉上温降梯度较大,温度适宜进行SNCR脱硝反应的炉内空间较小。根据温度分布,锅炉满负荷运行时,SNCR脱硝系统投用还原剂喷射3区、4区和5区的喷枪比较合适。在氨氮摩尔比为1.1的条件下,该燃煤锅炉上SNCR脱硝效率在27%左右。向炉内喷入少量的添加剂一氧化碳(CO)可以加快SNCR反应的速率,减少NH3漏失。  相似文献   

13.
为研究循环流化床炉内流动和燃烧产生的NO_x的不均匀性对SNCR(选择性非催化还原)脱硝效率的影响,针对炉内燃烧、喷氨和SNCR脱硝反应等一系列过程,建立了稠密气固流动耦合化学反应的数学模型,全面模拟了CFB(循环流化床)锅炉的气固流动、燃烧反应、NO_x生成和脱硝反应过程,重点研究了非均匀入口时不同喷氨方式对脱硝效率和氨逃逸率的影响。结果表明:CFB锅炉燃烧后在水平烟道出口存在明显的NO_x通量不均匀;通过改变喷氨点结构参数和操作参数,能显著提高脱硝效率,当采用第一列喷氨、垂直入射等措施且氨氮比为1.2时,脱硝效率能达到68%以上。  相似文献   

14.
在实验室和Fluent软件模拟条件下研究温度和氨氮摩尔比(NSR)变化对选择性非催化还原技术(SNCR)脱硝效率的影响,同时关注氨气逃逸现象。结果显示:温度是SNCR的控制因素,低温情况下,SNCR脱硝效率很低,温度从750℃提升至1 000℃,脱硝效率先提高并在950℃达到峰值,因为NH3的还原作用出现拐点。在低温下提高NSR对脱硝效率的影响不大,温度提高至SNCR反应温度时,提高NSR可以有效促进脱硝反应,但是过高的NSR因为竞争反应会使脱硝效率的增加放缓,NSR=1.5较为合适。低温下,NSR越大,氨气逃逸现象越严重,随着温度增加,SNCR反应提升,氨气逃逸得到明显改善。  相似文献   

15.
文中主要介绍了选择性非催化还原(SNCR)烟气脱硝技术的原理、工艺流程及影响因素。简要分析了SNCR技术在循环流化床锅炉(CFB)中的应用优势,结合SNCR在云南某厂的应用改造工程实例,验证了SNCR技术在CFB上的脱硝性能,实践证明SNCR技术在CFB中的应用是成功的。  相似文献   

16.
《动力工程学报》2017,(4):301-306
为促进工程中选择性非催化法脱硝系统的优化,有效控制燃煤电厂NO_x排放量,通过建立完善的选择性非催化脱硝(SNCR)反应等温实验系统,研究了反应温度、混合时间和O_2体积分数对SNCR过程的影响.结果表明:在973~1 373K内,随反应温度的升高,脱硝效率先升高后下降,1 173K为最佳脱硝温度,此时脱硝效率达到92.9%;混合时间缩短可有效提高脱硝效率,特别是当温度高于1 203K时,随着混合时间的缩短,脱硝效率明显提高;O_2体积分数的增加在温度低于1 148K时促使脱硝效率升高,而在温度高于1 148K时会导致脱硝效率降低.  相似文献   

17.
为考察反应温度、氨氮摩尔比(NSR)、氧气体积分数及停留时间对选择性非催化还原(SNCR)脱硝效率的影响规律,并探究乙醇、碳酸钠和氯化铁添加剂的低温SNCR脱硝增效特性,深入分析其脱硝反应机理,在管式反应炉上进行了以碳酸氢铵为还原剂的SNCR脱硝实验及各添加剂的低温脱硝增效实验。实验结果表明:当氨氮摩尔比为1.7,氧气体积分数为4%时,以碳酸氢铵为还原剂的SNCR法在830~1 000 ℃下的脱硝效率高于60%;氧气体积分数为零时,不同温度下脱硝效率始终低于15%,氧气体积分数为2%~6%时,650~1 000 ℃下的脱硝效率随氧气体积分数增加而提高;SNCR反应速率随温度的升高而加快,反应达到平衡所需的停留时间变短;在模拟烟气中添加200 μl/L的乙醇可使650~800 ℃的低温范围内脱硝效率平均提升近30%,650 ℃的脱硝效率达到33.4%;添加少量碳酸钠(25 μl/L)或100 μl/L的氯化铁可使700~800 ℃下的脱硝效率平均提升超过25%;3种添加剂都能通过提高NH2自由基的生成量提高低温下SNCR法的脱硝效率。  相似文献   

18.
概述了选择性非催化还原法(SNCR)烟气脱硝的工艺原理及其主要影响因素,介绍了SNCR在75 t/h循环流化床垃圾焚烧炉上的应用情况,并对SNCR脱硝工艺的发展给出了建议.  相似文献   

19.
针对生活垃圾焚烧行业排放标准的趋势,介绍、对比SNCR技术、SCR技术、SNCR和SCR联合技术的原理、影响因素、经济性和工程应用,开发适应150℃以下的超低温SCR技术是垃圾焚烧烟气脱硝技术发展的趋势.  相似文献   

20.
随着SCR脱硝效率的上升,喷氨格栅(AIG)处烟气速度场在SCR均流与混合技术中变得越来越重要.以某高效电站SCR为研究对象,利用经冷态模型校验过的SCR数值模型,分析AIG处烟气速度场10种典型变化对电站SCR系统内均流与还原剂混合性能的影响.结果显示,对高脱硝效率的SCR系统,AIG处烟气速度场变化对催化剂入口界面上氨氮比分布影响很大,对入口界面上速度场也有一定影响.设计中控制AIG处烟气流速不均匀性可以提高SCR内均流与混合的品质.在AIG处流速不均匀性控制得较好的高效SCR中,随着AIG处流速不均匀性上升,催化剂入口界面上氨氮比不均匀性增大;AIG处速度场与催化剂处速度场具有相似性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号