首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 428 毫秒
1.
为满足超低排放标准,某电厂筹建超临界CFB锅炉并在旋风分离器处安装选择性非催化还原(SNCR)脱硝设备。运用CHMKIN软件简化SNCR反应机理,并将简化后的18个化学反应机理和CFD软件结合,对CFB锅炉旋风分离器SNCR脱硝反应过程进行数值模拟,得到超临界CFB锅炉SNCR脱硝特性。结果表明:SNCR的反应温窗范围在850~1 050℃间,脱硝率随温度增加先升高而后降低,在950℃达到峰值;低温时提高氨氮摩尔比(NSR)对脱硝率影响不大,温度在反应温窗内时,提高NSR可以有效提升脱硝率,但增加NSR到一定程度,增涨会变缓,设置NSR=1.5左右较合理;低温时NH_3逃逸量随NSR升高而增加,温度升高,NH_3逃逸量逐渐减少,温度大于935℃时NH_3逃逸量小于10 mg/m~3。  相似文献   

2.
为考察反应温度、氨氮摩尔比(NSR)、氧气体积分数及停留时间对选择性非催化还原(SNCR)脱硝效率的影响规律,并探究乙醇、碳酸钠和氯化铁添加剂的低温SNCR脱硝增效特性,深入分析其脱硝反应机理,在管式反应炉上进行了以碳酸氢铵为还原剂的SNCR脱硝实验及各添加剂的低温脱硝增效实验。实验结果表明:当氨氮摩尔比为1.7,氧气体积分数为4%时,以碳酸氢铵为还原剂的SNCR法在830~1 000 ℃下的脱硝效率高于60%;氧气体积分数为零时,不同温度下脱硝效率始终低于15%,氧气体积分数为2%~6%时,650~1 000 ℃下的脱硝效率随氧气体积分数增加而提高;SNCR反应速率随温度的升高而加快,反应达到平衡所需的停留时间变短;在模拟烟气中添加200 μl/L的乙醇可使650~800 ℃的低温范围内脱硝效率平均提升近30%,650 ℃的脱硝效率达到33.4%;添加少量碳酸钠(25 μl/L)或100 μl/L的氯化铁可使700~800 ℃下的脱硝效率平均提升超过25%;3种添加剂都能通过提高NH2自由基的生成量提高低温下SNCR法的脱硝效率。  相似文献   

3.
以醋酸钠工业废盐减量化无害化处置为背景,利用携带流反应装置,研究了反应温度、Na含量、停留时间、氨氮比(NSR)以及烟气组分(NO、O_2、CO)浓度等氨水SNCR脱硝性能的影响。结果表明,在醋酸钠和醋酸钠工业废盐存在条件下,氨水SNCR脱硝效率随着反应温度升高呈现先增加后下降的趋势,两种Na盐添加剂均能有效拓宽氨水SNCR脱硝温度窗口,并使得窗口温度向低温方向偏移170℃,达到700~985℃。随着烟气中Na盐含量的提高,其氨水脱硝效率线性增加,当Na含量为150μmol/mol时,两种Na盐氨水脱硝效率可达到80%。在温度为800℃和Na含量为100μmol/mol下,随着停留时间、NO浓度和氨氮比的增加,氨水SNCR脱硝效率增加;随着O_2浓度的升高,氨水SNCR脱硝效率呈现先迅速升高后下降的趋势,但随着CO浓度的升高,脱硝效率则呈现先下降后上升的相反趋势。  相似文献   

4.
常规SNCR(非选择性催化还原)是在850~1 100℃的烟气中喷入氨基还原剂,实现降低NO_x的目的。另外,SNCR也可以拓展到低氧的条件下,实现较高温度下脱硝,即主燃区喷氨技术。本文将主燃区喷氨技术应用到75 t/h四角切圆煤粉锅炉中,与OFA(空气分级)、SNCR协同实现深度脱硝,实验结果表明:在OFA基础上采用主燃区喷氨技术时,随着氨氮比NSR_1的增加,NO_x排放浓度有明显降低,最佳氨氮比NSR1=1.73,比单一用OFA时还原效率提高了21.9%,无氨逃逸产生;仅采用SNCR技术时,最佳氨氮比NSR_2=1.84,在OFA的基础上NO_x还原效率提高了40.4%,当NSR_21.84时出现氨逃逸现象;在SNCR脱硝效果有限的条件下,在主燃区喷入氨还原剂可进一步降低NOx排放,还原效率可提高17%,并无氨逃逸存在;在SNCR还原效果受限时,主燃区喷氨技术与SNCR协同可实现炉内深度脱硝,并避免氨逃逸问题。  相似文献   

5.
在沉降炉脱硝试验平台上,对不同氨剂的选择性非催化还原(SNCR)脱硝特性进行了试验研究.结果表明:反应适宜氨氮比为1.5,氨气、尿素、碳酸氢铵脱硝的最佳温度窗口分别为985~1 030℃、775~1 085℃、760~1 075℃,尿素和碳酸氢铵最大脱硝效率达90%,优于氨气的80%;增大氨氮比或降低烟气氧浓度均可提高SNCR脱硝效率;在以尿素作为还原剂的SNCR脱硝反应过程中,协同加入钠盐添加剂可在保证最大脱硝效率基本不变的前提下,使反应温度窗口由782.9~1 086.3℃拓宽为749.5~1 086.3℃.  相似文献   

6.
为探究循环流化床(CFB)锅炉的低NOx排放性能,在热输入功率为81.3 kW的CFB热态实验台上研究了燃煤平均粒径与二次风对NOx原始生成量的影响,考察了以碳酸氢铵为还原剂,以碳酸钠和乙醇为添加剂的选择性非催化还原(SNCR)低温脱硝增效性能。结果表明:随燃煤平均粒径的减小,NOx生成量降低;提高二次风比例及二次风口位置可降低NOx生成量;以碳酸氢铵为还原剂的SNCR法在氨氮摩尔比为1.7时脱硝效率达到65.2%,还原剂利用率达到峰值;在650~800 ℃的低温范围内,添加碳酸钠较无添加剂工况的脱硝效率平均提升24.5个百分点,750 ℃时的脱硝效率提升34.8个百分点;添加乙醇后的低温区效率平均提升28.2个百分点,温度低于700 ℃时增效性能优于添加碳酸钠工况;添加剂主要通过自由基链式反应提升SNCR法的低温脱硝性能。  相似文献   

7.
介绍了130 t/h循环流化床锅炉上采用选择性非催化还原脱硝技术进行氮氧化物脱除,探讨了反应温度、氨氮比(NSR)、还原剂粒径及钙硫比(Ca/S)对脱硝率及氨逃逸的影响。结果表明,NSR=1.4,脱硝率能达到最大值76.8%,最佳脱硝反应温度在920~935℃。脱硝率随着NSR升高而增加,而NSR1.6后,脱硝率增加趋于平缓。在NSR恒定的情况下,脱硝率随着喷射流量的增加而增加,最佳的喷射流量为160 L/h,相应的雾化粒径为120μm。Ca/S的增加将导致没有参与反应的CaO含量增多,而CaO对NH3有催化氧化效果,虽然减少了NH3逃逸但同时也降低了NH3的利用率。  相似文献   

8.
对用烃类和氨为还原剂的脱硝技术的计算分析   总被引:3,自引:0,他引:3       下载免费PDF全文
采用Chemkin 4.0软件包中基状流反应器和Miller等人的化学动力学模型,对再燃、先进再燃、选择性非催化还原(SNCR)以及加入烃类的SNCR反应的原理进行了模拟计算和比较分析,研究了不同反应温度、再燃燃料比和停留时间对脱硝效率的影响。计算结果表明,先进再燃引入氨基还原剂,可以拓宽脱硝的有效温度区间,加快反应速率,提高脱硝效率约20%,优于常规再燃技术;SNCR反应中加入很少量烃类(烃/NO〈1)可以增加其有效的脱硝温度范围,加快脱硝反应速率,使完成脱硝反应所需时间缩短一半,在较低的反应温度下达到较高的脱硝效率;而先进再燃达到相当的脱硝率则需要消耗超过15%的再燃燃料。  相似文献   

9.
SNCR技术作为一种建设周期短、投资少、脱硝效率中等的烟气脱硝技术,其性能受多种因素影响,主要有温度窗口、停留时间、氨氮比NSR、反应剂与烟气的混合程度、温度梯度、添加剂、烟气氛围以及还原剂种类等。反应窗口的选择、混合均匀性、化学动力学模拟为SNCR技术最关键工艺,对于大型电站锅炉,脱硝效率一般低于40%,大型炉型的低脱硝率、混合的均匀性、高氨逃逸是限制SNCR技术发展的制约因素,针对这些制约因素,国内外采用了多种手段,如与OFA、SCR、再燃技术联合,以促进SNCR技术的发展。  相似文献   

10.
为了改善选择性非催化还原(SNCR)脱硝工艺的反应特性,以H2O2为添加剂,对SNCR过程进行了实验研究。在小型SNCR实验台上进行实验,以N2作为载气,以纯NO模拟NOx气氛,初始NO浓度为360μL/L,O2=4%,H2O=8%,NSR=1.5。通过对实验结果进行分析,得到H2O2对低温下的脱硝率有促进作用,对最大脱硝率以及最佳脱硝温度没有影响,最大脱硝率依然为80%左右,最佳脱硝温度为925℃。另外还分析了H2O2对NH3浓度、HNCO浓度、NO2浓度、N2O浓度以及N2转化率的影响及其原因。  相似文献   

11.
对1台以尿素为还原剂、配备Compact型旋风分离器的循环流化床锅炉的选择性非催化还原脱硝性能进行了数值模拟,重点研究了温度、氨氮摩尔比、NO初始浓度和O_2浓度对SNCR反应性能的影响规律。计算结果表明:最佳NSR在1.4左右,最佳温度在1 173 K附近;O_2浓度的变化对选择性非催化还原反应的影响和温度密切相关,当温度高于1 150 K时,O_2浓度的增加会导致还原剂的氧化反应加剧,使得脱硝效率随O_2浓度的上升而下降,温度越高,氧化反应越剧烈,脱硝效率下降趋势越明显;同时,O_2浓度的上升,有利于最佳脱硝温度向低温方向移动,综合考虑,认为烟气中O_2浓度不应高于3%。  相似文献   

12.
对某厂一台240 t/h煤粉锅炉采用空气分级、化工合成气再燃及以氨气为还原剂的SNCR(选择性非催化还原)等技术进行联合脱硝改造。实验结果表明:气体再燃比在0~20%时,随着再燃量增大脱硝效率增加,高、低负荷工况时脱硝效率可达39.1%、43.1%;SNCR喷射点位置沿炉膛纵深存在温度梯度,水冷壁附近温度梯度较大,靠近炉膛中心处温度梯度降低;在空气分级基础上,高、低负荷工况时SNCR可分别提高35.1%、42.4%脱硝效率,氨气的使用不会造成锅炉效率的降低;满负荷工况采用气体再燃及SNCR技术联合脱硝时,在尾部氨逃逸小于12 mg/m3时,可达到80.2%的整体脱硝效率。  相似文献   

13.
为与复杂实际流动模型结合并适应炉膛燃烧模拟计算,需要建立简化的能准确反映NO还原过程的SNCR总包反应动力学模型。不同于实验数据直接拟合方法,采用遗传算法,通过比较总包反应模型与详细机理模型的计算结果,得到了优化的总包反应动力学参数。在不同反应停留时间、不同NSR和不同温度(800~1 400 K)下利用总包反应动力学模型进行计算。结果表明:总包反应模型能够准确预测NO还原反应温度窗口、脱硝效率和氨的摩尔分数的变化规律,也能够预测停留时间和NSR对脱硝效率及氨逃逸的影响,具有较好的适用性;预测停留时间为0.3 s时最低NO摩尔分数出现在1 225 K的温度下,最佳脱硝效率约为80%;当温度为1 193 K且氨氮比为1.5、反应时间为0.1 s左右时,反应体系中NO物质的量浓度就已降为初始浓度的50%以下;当反应时间延长到0.6 s时,脱硝率几乎达到最大值,停留时间超过0.6 s之后NO摩尔分数降低不明显。  相似文献   

14.
添加剂协同选择性非催化还原NO的过程研究   总被引:2,自引:0,他引:2  
在多功能脱硝实验台上研究了不同条件下加入钠盐、含氧有机化合物以及天然气3类添加剂,对选择性非催化还原(SNCR)NO过程的影响.结果表明:碳酸钠随氨水、尿素喷入炉膛,提高了全部实验温度下SNCR的脱硝率,喷入炉膛的碳酸钠最佳质量浓度为950 mg/m3;900 ℃时,实验选用的5种钠物质均能一定程度提高SNCR的脱硝效率,其促进能力以乙酸钠、甲酸钠、氢氧化钠、碳酸钠、氯化钠的顺序降低;800~900 ℃时,乙醇、丙三醇、乙酸甲酯均明显提高了SNCR的脱硝率,但在1 000℃时又不同程度降低了NO最高还原率;加入天然气改变了SNCR脱硝反应的温度特性,拓宽了反应温度窗口,并且几乎没有影响最佳脱硝效率,通入的天然气量越大脱硝率越高,但考虑到天然气的燃尽,建议天然气/NO物质的量比取1.0.  相似文献   

15.
为达到超低排放标准,某电厂筹备660,WM超临界循环流化床机组时在旋风分离器处安装SNCR脱硝设备.通过实验方法研究温度、氨氮摩尔比(R_(NS))、氧含量和循环灰对SNCR脱硝的影响.结果表明,温度从800,℃提升到950,℃,脱硝率不断提高且在950,℃达到峰值,再继续升温由于NH_3氧化作用脱硝率下降;在温度低于850,℃时,温度是反应的控制因素,提升R_(NS)影响不大,在温度超过850,℃时,提升R_(NS)会明显提高脱硝率,但R_(NS)大于1.5后,脱硝率增幅放缓;不含氧时,OH等活性基团很少导致SNCR反应进行缓慢,含氧时,氧含量增加会加强NH_3氧化减小脱硝率;循环灰含有Fe_2O_3、CaO金属氧化物可以起到催化作用,加强NH_3的氧化反应从而降低脱硝率.  相似文献   

16.
提出利用生物质气化气为选择性非催化还原技术(SNCR)反应的添加剂,并进行相应的反应动力学计算。计算结果表明生物质气化气作为添加剂可以提高低温条件下SNCR反应的脱硝效率。生物质气化气主要成分为H2、CH4和CO,其中H2和CH4对温度窗的作用明显,CO的效果较小。各种气体成分主要通过促进OH基元生成来促进相对较低温度下脱硝反应过程的进行。  相似文献   

17.
以氨气作为还原剂,在管壳式反应器中考察了温度、一氧化氮起始质量浓度、氧气质量分数及氨氮摩尔比对选择性非催化还原反应的脱硝效率以及氨逃逸的影响,为垃圾焚烧发电项目中脱硝工艺提供一定的参考依据。试验结果表明:在875~1 000℃,可得到最佳的反应温度窗口;一氧化氮起始质量浓度、氧气质量分数对脱硝反应的影响较小;当氨氮摩尔比为1.5:1时,脱硝反应效果较好。  相似文献   

18.
《动力工程学报》2017,(4):301-306
为促进工程中选择性非催化法脱硝系统的优化,有效控制燃煤电厂NO_x排放量,通过建立完善的选择性非催化脱硝(SNCR)反应等温实验系统,研究了反应温度、混合时间和O_2体积分数对SNCR过程的影响.结果表明:在973~1 373K内,随反应温度的升高,脱硝效率先升高后下降,1 173K为最佳脱硝温度,此时脱硝效率达到92.9%;混合时间缩短可有效提高脱硝效率,特别是当温度高于1 203K时,随着混合时间的缩短,脱硝效率明显提高;O_2体积分数的增加在温度低于1 148K时促使脱硝效率升高,而在温度高于1 148K时会导致脱硝效率降低.  相似文献   

19.
研究了410 t/h煤粉炉的SNCR/SCR联合脱硝技术。当NSR为1.5时,NO_x浓度从350 mg/m~3下降到100 mg/m~3以下,脱硝率约为71.4%,NH_3逃逸小于5 m L/m~3。脱硝率随着负荷的下降呈现上升趋势,NSR的进一步增加对提高脱硝率的意义不大,但是会大量增加NH_3逃逸。向炉膛喷射尿素溶液会间接增加冷灰斗水封水的氨味及积灰,此外要避免尿素溶液滴落在水冷壁或喷射到换热器管上从而产生腐蚀。逃逸的NH_3促进烟气中硫酸氢铵的生成,加剧空预器的腐蚀,同时还会影响飞灰的品质,与烟气中的HCl等生成NH_4Cl从而影响GGH的运行,增加烟气PM_(2.5)中NH~+_4离子浓度从而增加烟囱排放的烟羽浊度,形成新的污染,因此要严格控制NH_3逃逸并加强空预器、GGH等吹灰措施。  相似文献   

20.
在自行设计的选择性非催化还原(SNCR)脱硝试验台上,通过在还原剂中添加CO,研究了CO对SNCR脱硝工艺的影响,并利用Chemkin 4.1软件对试验工况进行了模拟.结果表明:改进型TB系列喷嘴采用中心逆喷方式可大大增强还原气体与主烟气的混合效果,明显优于工业上常用的侧喷方式,且不存在还原剂的催化分解问题;添加CO可使SNCR工艺的反应温度窗口降低并变宽;在低于875℃的条件下,添加CO有助于提高NO2的脱除效率,随着CO添加量的增加,既定温度下NOx的脱除效率先提高后降低,且随着温度的降低,达到NO相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号