首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
为研究水胶比(质量比)和粗骨料体积分数对早龄期混凝土内部相对湿度和等效水分扩散系数的影响,测量了水胶比为062,043,030(分别标记为C3,C5和C8)的混凝土早龄期28d内部相对湿度的发展,进而求解了其水分扩散系数.结果表明:随着水胶比的增大,早龄期混凝土内部相对湿度饱和期的持续时间延长,自干燥引起的内部相对湿度下降减小,水分扩散引起的内部相对湿度下降增大,混凝土水分扩散系数也增大;自干燥单独作用下,C3,C5和C8混凝土密封试件28d内部相对湿度平均值分别为954%,933%和796%,而当自干燥和环境干燥共同作用时,其干燥试件对应值分别为700%,732%和730%;C3系列普通混凝土的水分扩散系数最大值Dmax约为C8系列高强混凝土的10倍.另外,早龄期混凝土中水分扩散过程主要由砂浆相控制,水分很可能绕开粗骨料进行扩散;单调增加石灰石粗骨料的体积分数(21%~500%)对同水胶比混凝土的早龄期内部相对湿度发展和水分扩散系数的影响可以忽略.  相似文献   

2.
柯杨  张鹭  田水  刘扬 《混凝土》2020,(8):88-92,97
为了研究轻骨料混凝土内部的早龄期湿度变化规律,采用0.35、0.45水灰比,40%、20%的粗骨料体积比,堆积密度为900、500级的轻骨料制成轻骨料混凝土试件,对早龄期轻骨料混凝土开展了一维湿度扩散试验和自干燥试验研究,并采用拟合的方法建立了早龄期轻骨料混凝土一维湿度扩散和自干燥作用数学模型。试验结果显示,水灰比、粗骨料体积比和级别对混凝土内部的湿度扩散规律有明显的影响,水灰比越低、粗骨料体积比越大,粗骨料密度等级越低,轻骨料混凝土内部湿度传输速率越快;自干燥试验显示,水灰比不同的混凝土内部相对湿度降低速率基本相同;数学模型和轻骨料混凝土试验数据计算吻合,可揭示早龄期轻骨料混凝土湿度扩散的规律。  相似文献   

3.
陶粒内养护高性能混凝土抗裂性能研究   总被引:1,自引:0,他引:1  
通过平板开裂试验,研究陶粒内养护对不同强度混凝土早期抗裂性能的影响规律,并结合混凝土塑性收缩试验、绝热温升试验和内部相对湿度变化,探明陶粒内养护提高混凝土早期抗裂性能的微观机理.结果表明:在混凝土中使用饱水陶粒替代部分粗骨料,能够减少混凝土材料的早期塑性收缩,降低大体积混凝土内部的水化温升,有效提高混凝土早期的抗裂性能,达到显著的内养护效果;饱水陶粒通过减缓早龄期试件内部相对湿度的快速下降,改善了胶凝材料水化环境,有效抑制了胶凝材料水化过程引发的自干燥作用,降低了混凝土材料早期收缩,从而提高了混凝土材料的抗裂性能;C30与C60两个强度混凝土中饱水陶粒替代粗骨料的最佳比例均为20%(体积分数).  相似文献   

4.
为研究煤矸石粗骨料对混凝土干燥收缩的影响,试验分别以陕西榆神矿区3种典型矿井煤矸石为粗骨料,并以煤矸石取代率为变量,设计了10组干燥收缩试件。通过对试件在390d内干燥收缩变形的观测,分析煤矸石粗骨料对煤矸石混凝土收缩发展与收缩应变的影响,给出煤矸石混凝土的干燥收缩预测模型。试验表明:相较于普通混凝土,受煤矸石粗骨料吸返水特性影响,煤矸石混凝土干燥收缩发展存在滞后现象,且煤矸石粗骨料吸水率越高,其混凝土干燥收缩发展越慢,试件达到收缩稳定的龄期也越长。煤矸石粗骨料的表观密度与吸水率是影响煤矸石混凝土干燥收缩终值的2个主要指标,且随不同来源煤矸石粗骨料表观密度的降低、吸水率的增大,其混凝土的干燥收缩应变也随之增大。在CEB-FIP 90模型的基础上,分别引入了2个系数来考虑煤矸石粗骨料掺入对混凝土收缩发展与收缩终值的影响,并提出适用于煤矸石混凝土的干燥收缩预测模型。通过与试验数据对比,建议模型的预测精度较高,具有较好的适用性。  相似文献   

5.
再生细骨料的高吸水特性可有效提高再生细骨料自密实混凝土内部相对湿度,降低收缩。研究了再生细骨料掺量(0,25%,50%,75%)和干湿状态(干燥、饱和面干)对再生细骨料自密实混凝土内部相对湿度及干燥收缩的影响规律,建立了内部相对湿度及干燥收缩之间的关系。试验结果表明,封闭及单面干燥条件下,再生细骨料延缓了混凝土内部相对湿度的下降过程,提高不同龄期混凝土的内部相对湿度。封闭条件下饱和再生细骨料自密实混凝土的内部相对湿度高于干燥再生细骨料自密实混凝土。再生细骨料可以明显降低混凝土的干燥收缩,且随再生细骨料掺量的增加,降低程度提高。再生细骨料自密实混凝土干燥收缩与相对湿度降低值以及再生细骨料引入水量呈现线性关系。  相似文献   

6.
《混凝土》2015,(8)
为了探讨混凝土抗压强度和收缩与再生粗骨料取代率之间的关系,研究了再生粗骨料取代率为30%、40%、50%和70%混凝土的28 d立方体抗压强度和自收缩、干燥收缩的变化趋势,并建立了自收缩和干燥收缩与取代率和龄期之间的函数关系。结果表明:改变再生粗骨料的取代率,混凝土抗压强度呈三次抛物线变化,在取代率为50%时混凝土抗压强度取得最大值;再生混凝土的自收缩、总收缩和干燥收缩与普通混凝土变化趋势相同,在龄期3 d前发展较快,龄期7 d后相对趋于平缓;再生混凝土的收缩变形随再生粗骨料取代率的增加而逐渐增大,且在龄期28 d时再生混凝土各个取代率的干燥收缩增长幅度都大于自收缩。  相似文献   

7.
对已有研究中再生混凝土干燥收缩试验结果进行分析,发现再生细骨料对再生混凝土干燥收缩的影响随着基体混凝土强度的增大而降低,然而现有再生细骨料混凝土干燥收缩模型均未考虑基体混凝土强度的影响,这会高估采用源于高强混凝土的再生细骨料配制的再生混凝土的干燥收缩变形。基于现有试验结果,引入基体混凝土抗压强度影响系数,对课题组前期提出的再生细骨料混凝土干燥收缩模型进行修正,所提出的修正模型对再生混凝土干燥收缩性能预测结果相对现有其他模型预测结果离散性更小、精度更高,线性回归系数为1.009,判定系数为0.841。在工程常见参数范围内,采用修正模型进行了系统的参数分析,以研究基体/再生混凝土强度、砂率、再生粗/细骨料取代率、再生粗/细骨料吸水率和环境相对湿度等参数对再生混凝土干燥收缩的影响。分析结果表明,再生细骨料取代率的影响随再生粗骨料取代率的增大而降低,但影响依然显著;随着基体混凝土抗压强度的提高,再生骨料对混凝土干燥收缩的影响显著降低,设计中需考虑该因素的影响。  相似文献   

8.
通过试验研究了养护时间、骨料级配、水灰比、骨料体积含量和最大骨料直径对早龄期混凝土氯离子扩散系数的影响。结果表明,早龄期混凝土氯离子扩散系数随着养护龄期的增大而减小,但随着水灰比的增大而增大;早龄期混凝土氯离子扩散系数随着骨料体积含量和最大骨料粒径的增大而减小;也发现骨料级配对早龄期混凝土氯离子扩散系数有一定的影响。  相似文献   

9.
研究了2种轻细骨料的微观结构与释水性能及其预湿后对混凝土内部相对湿度和自收缩的影响.提出了混凝土内养护效率的概念,并研究了轻细骨料粒径与颗粒分布对内养护效率的影响.结果表明:轻细骨料孔隙体积和孔径皆大于硬化水泥净浆;预湿轻细骨料可以延迟混凝土由于自干燥引起的内部相对湿度降低并减小其降低幅度;内养护混凝土的自收缩和内部相对湿度存在线性关系.当轻细骨料用量占净浆体积的36%~39%时,混凝土在早期的28d内不产生自收缩.混凝土内养护效率随轻细骨料颗粒间距和半径比值的增大而减小,在轻细骨料颗粒间距和半径比值为11时,混凝土内养护效率为100%.  相似文献   

10.
张海成 《城市建筑》2013,(14):230-230
在干燥的环境中,混凝土的调配以及湿度的配比,对于混凝土的弹性以及抗压强度都有非常重要作用。如果混凝土内部所存在的水分过度地蒸发,水泥中所存在的水分就会因为散得很快,而影响其强度。本文主要研究粗骨料体积分数对早龄期混凝土弹性模量和轴心抗压强度发展的影响。  相似文献   

11.
密封养护混凝土内部湿度与收缩的一体化试验与模拟   总被引:1,自引:0,他引:1  
对3种强度等级的混凝土进行了密封养护下内部相对湿度和自由变形的试验测定,获得了从混凝土浇注开始到77d龄期混凝土内部湿度和自由变形的发展数据,同时对混凝土因水泥水化引发的自干燥和自收缩问题进行了模拟.结果表明:混凝土内部相对湿度和收缩具有较好的同步性;混凝土内部湿度变化可以看作是其自收缩变化的驱动力;水灰比越小,自干燥引起的混凝土内部相对湿度下降幅度越大,密封条件下混凝土的收缩也越大;以水泥水化度和混凝土内部湿度为内因的自干燥与自收缩模型较好地模拟了密封条件下混凝土内部湿度变化与相应的自收缩发展.试验结果与模型预测值吻合良好,模型可用于不同养护环境下混凝土自干燥与自收缩的分析预测.  相似文献   

12.
使用不同种类与掺量的再生骨料替代天然骨料,制备高强度再生骨料混凝土,系统研究再生骨料种类与掺量对干燥收缩的影响。结果表明,高强度再生混凝土具有较好的体积稳定性;随着再生骨料掺量的增加,高强度再生混凝土的干燥收缩增大;单掺再生粗骨料时,高强度再生混凝土的干燥收缩较基准粉煤灰混凝土小,这与再生粗骨料所具有的“内养护”效果有关,而再生细骨料的加入会显著提高混凝土的干燥收缩;采用双曲线函数模型对高强度再生混凝土的干燥收缩进行了拟合,其相关指数均在0.90以上,可较好地预测高强度再生混凝土的干燥收缩。  相似文献   

13.
通过试验研究了抗压强度为200MPa的活性粉末混凝土在水化过程中内部相对湿度及其自收缩随龄期的变化规律;探讨了减少其自干燥效应的措施,并分析了活性粉末混凝土内部相对湿度与对应自收缩之间的相互关系.  相似文献   

14.
混凝土导热系数的试验研究与预测模型   总被引:3,自引:0,他引:3  
采用防护热板法和瞬态平面热源法测试了粗骨料、水泥砂浆和混凝土的导热系数,考察了砂率、骨料种类及其体积分数、水灰比和饱和度对混凝土导热系数的影响;利用复合材料导热系数模型,分析了饱和/干燥状态下混凝土内水泥砂浆与粗骨料间界面热阻的影响.结果表明:混凝土导热系数随饱和度、骨料体积分数、骨料导热系数的增大而增加,随水灰比的增大而减小;对干燥混凝土导热系数的预测需考虑界面热阻的影响.在假定混凝土固相导热系数随着饱和度线性增大的基础上,提出了基于饱和度影响的混凝土导热系数计算模型.  相似文献   

15.
以再生粗骨料的预处理方法及其取代率(质量分数)为变化因素,研究了再生混凝土自收缩和干燥收缩应变的变化规律.结果表明:再生粗骨料未预处理的再生混凝土,其自收缩和干燥收缩应变均大于相同条件下的普通混凝土,且随再生粗骨料取代率的提高而增大.采用合适的预处理方法,可明显减小再生混凝土的收缩应变,但自收缩和干燥收缩应变的改善效果各不相同.对于再生混凝土自收缩,预湿法的改善效果最佳,可减小自收缩应变约30.0%,净浆裹石法居中,而掺硅灰的净浆裹石法会使自收缩应变增加;对于再生混凝土干燥收缩,掺硅灰的净浆裹石法的改善效果最佳,可减小干燥收缩应变约15.0%,净浆裹石法居中,而预湿法次之.在实际应用中,可视不同体型的再生混凝土构件,根据其收缩特性选择不同的预处理方法,使其自收缩与干燥收缩应变接近普通混凝土.  相似文献   

16.
研究了掺入预湿轻细骨料(粉煤灰陶砂)的内养护混凝土与普通混凝土在不同干燥环境下的收缩和相对湿度发展、质量损失、强度发展及开裂风险.结果表明:当暴露在干燥环境时,内养护混凝土的相对湿度下降速率和总体收缩速率均大于普通混凝土,延长密闭养生时间至28d不能显著降低内养护混凝土的总体收缩;干燥环境下内养护混凝土更易失水,从而降低内养护效率;早龄期暴露于干燥环境下的普通混凝土和内养护混凝土的抗压强度和弯拉强度均显著降低;干燥环境下,内养护技术不能显著提高混凝土的抗开裂性能,但在不与外界发生水分交换的条件下,内养护混凝土未出现开裂.因此,内养护混凝土宜用于大体积混凝土或非表层的结构物混凝土中.  相似文献   

17.
为研究周期性温湿度作用下混凝土体积变形规律,该文设定周期性温湿度变化环境,对三种不同水灰比混凝土内部温湿度分布及体积变形进行试验研究。试验结果表明:周期性温湿度条件下,混凝土边界处相对湿度随龄期的增长而呈逐渐下降趋势,而混凝土中心位置相对湿度缓慢降低,混凝土内外形成湿度差,且随龄期的增长而逐渐增大。对于养护28d以后的混凝土,在周期性温湿度变化条件下,不同水灰比混凝土收缩变形均随着周期性温湿度变化而周期性变化,且变化幅度随龄期的增长而逐渐缩小,并逐渐趋于稳定;高温低湿环境对低水灰比混凝土收缩变形影响较大,低水灰比混凝土在高温作用下其膨胀变形更大。  相似文献   

18.
为掌握再生混凝土的抗裂性能,通过单轴拉伸徐变试验,研究了再生粗骨料取代率(质量分数)、矿物掺和料掺量(质量分数)对再生混凝土早龄期拉伸徐变性能的影响.结果表明:再生粗骨料取代率为50%~100%的再生混凝土拉伸徐变较普通混凝土增加8%~31%;再生混凝土拉伸徐变随矿物掺和料掺量的增加而增大,粉煤灰单掺和粉煤灰+矿渣复掺可使再生混凝土拉伸徐变分别增加8%~32%,3%~22%.以混凝土拉伸徐变M-Burgers预测模型为基础,考虑再生骨料取代率和矿物掺和料掺量的影响,提出了适用于再生混凝土早龄期拉伸徐变的预测模型.  相似文献   

19.
为了研究钢纤维体积率、再生粗骨料取代率、水灰比及龄期等因素对混凝土碳化性能的影响,采用室内试验方法对钢纤维再生混凝土进行碳化深度研究,利用无重复的双因素试验方法,并结合方差分析,全面的研究了钢纤维体积率、再生粗骨料取代率、水灰比及龄期对混凝土碳化深度的影响和变化规律。研究结果表明,钢纤维体积率与龄期、再生粗骨料取代率与龄期及水灰比与龄期均对混凝土碳化有非常显著的影响;再生粗骨料取代率为50%,水灰比为0.4时,随着钢纤维体积率的增加,碳化深度先是减小后又增加,当钢纤维体积率为1%时,再生混凝土碳化深度最小,这些变化规律均给了相应的拟合公式。  相似文献   

20.
采用MTS疲劳试验机进行了再生粗骨料混凝土轴向拉伸试验,研究分析再生粗骨料取代率对不同养护龄期下再生粗骨料混凝土轴向拉伸应力-应变全曲线的影响规律,并提出了再生粗骨料混凝土拉伸本构关系模型.研究结果表明:再生粗骨料混凝土轴向拉伸应力-应变全曲线的上升段斜率较普通混凝土低,下降段随着再生粗骨料取代率提高与养护龄期的增长而变陡;再生粗骨料混凝土的弹性模量随着养护龄期的增长呈线性增长,当荷载超过50%之后,其变形模量的下降速度快于普通混凝土;早龄期再生粗骨料混凝土的拉伸峰值应变随着再生粗骨料取代率的增大而增长;养护龄期低于7d时,再生粗骨料混凝土的抗拉强度增长速率快于普通混凝土;再生粗骨料混凝土的拉压比随着养护龄期的增长而下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号