首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 145 毫秒
1.
竖向条形锚定板水平拉拔极限承载力统一理论解研究   总被引:1,自引:0,他引:1  
针对竖向条形锚板拉拔问题的研究存在人为区分浅埋、深埋,且界定标准及力学模型的对称性认识不统一,基于自主研制的条形锚水平拉拔可视化模型试验和数值模拟试验,研究拉拔过程中板前土体的位移变形规律。极限状态下,板前存在弹性核三角形区域,其角度变化可反映板前滑移线场的对称性;随着埋深比的增大,三角形弹性核的上角增大(φ~π/4+φ/2),上侧土体位移变形范围相对缩小,从延伸至地表收缩至板前附近;下角减小(π/2~π/4+φ/2),下侧土体位移变形范围则相对扩大,边界与竖向夹角在π/2~3π/4+φ/2间变化;上下角之和基本保持不变(φ+π/2),板前滑移线场由非对称逐步向对称发展。在此基础上,提出相应的假定,构建可考虑埋深等因素变化的竖向条形锚定板的水平拉拔极限承载力学模型,并推导出极限承载力的统一理论解。计算结果表明:新的力学模型很好地反映了板前滑移线场的对称性随埋深比的连续变化规律,无需再人为区分浅埋和深埋;极限承载力统一理论解对砂土中竖向条形锚定板具有很好的适用性,计算结果与试验值符合的更好,较其它3种传统方法具有明显优势。  相似文献   

2.
锚板基础因其具有良好的抗拔特性而广泛应用于各类岩土工程问题中。在不同密实程度砂土中采用不同几何形状的锚板进行小比尺拉拔模型试验,分析锚板型式及尺寸对上拔承载特性的影响。试验结果表明,相同直径和埋深比的螺旋锚与平板锚上拔承载特性无明显差别;相同埋深比时,直径为50 mm的锚板上拔承载力系数略小于直径为20mm锚板的上拔承载力系数,而其上拔破坏位移比明显高于小直径锚板。进一步根据破坏位移比与埋深比关系曲线确定中密及密砂中浅、深破坏模式的临界埋深比,同时结合已有试验结果假设两种破坏模式的滑裂面,利用极限平衡分析推导并给出两种破坏模式下上拔承载力公式;通过与41个拉拔试验数据进行比较,验证了所提理论公式的适用性及准确性。  相似文献   

3.
通过模型试验和有限单元法分析了密砂中圆形锚板上拔承载力的尺寸效应问题。分别对直径为20,50,400 mm的锚板在埋深比为2~6时进行拉拔试验,获得上拔力和位移关系曲线及极限上拔力。基于不同埋深比时板径与上拔承载力系数关系曲线,可发现:相同埋深比时,随着锚板直径增加,上拔承载力系数逐渐减小;且随着埋深比增加,此现象愈明显。考虑密砂强度随应变发展而出现的软化现象,对理想弹塑性Mohr-Coulomb模型进行改进,基于改进的模型对上述12个拉拔试验进行有限元数值模拟,同时与理想弹塑性模型模拟结果进行比较。结果表明:理想弹塑性模型严重高估锚板上拔承载力,而考虑土体软化的模型能够模拟锚板上拔过程中破坏面上土体强度逐渐发挥的过程,计算得到的极限承载力与试验结果吻合较好。尺寸效应产生的原因一方面由于应力水平对土体强度的影响,另一方面由渐进破坏引起;埋深比越大,随着锚板直径增加,周围土体依次进入破坏的过程愈加明显。  相似文献   

4.
土体中锚板的上拔过程存在复杂的锚土相互作用,掌握其变形及破坏机制对于确定锚板的极限承载力和优化设计具有重要的意义.采用三维物质点法(MPM)模拟了砂土中圆形锚板的上拔过程,探究了不同埋深条件下土体的位移场分布及锚板的上拔破坏机制,并结合极限平衡法研究了砂土密实度、锚板尺寸和埋深等因素对其极限承载力的影响.结果 表明,临...  相似文献   

5.
分析了砂土中现有浅埋和深埋锚板力学模型的力学机理,比较了各力学模型的优缺点和承载力预估精度,推荐给出了各力学模型的使用范围,对锚板设计具有参考意义。  相似文献   

6.
隧道式锚碇是悬索桥锚碇的一种主要类型,由于锚塞体与围岩形成复杂的受力体系,其承载机制尤其是受载破裂全过程的力学行为尚不十分清楚。基于ABAQUS建立岩体弹脆塑性损伤本构模型,该本构同时考虑岩体张拉和剪切破坏机制,能够较好地模拟岩体变形破裂全过程,拓展原本构模型的应用范围;通过损伤数值分析揭示不同埋深情况下隧道式锚碇的破裂力学机制。结果表明,隧道锚变形破坏存在显著的渐进破坏特征,埋深变化下破坏模式的转变与围压作用下岩体脆-延-塑性的转换特征相关;浅埋情况下围压较小,隧道锚体系"脆性"大,发生喇叭形的张拉-剪切破坏;深埋情况围压较大,体系"延性"增强,破坏模式转变为沿锚塞体与围岩接触界面的剪切破坏,其极限承载力较浅埋情况大幅度增加。隧道锚的喇叭形破坏面与传统认识的直线型破坏面存在明显差别,将直接影响其承载力计算模型的建立,因此在隧道锚设计计算中应关注破坏面的实际形态,这对其他类似锚固工程,如抗拔短桩或锚杆的承载力分析也有参考价值。  相似文献   

7.
不同埋深扩体锚杆竖向拉拔破坏模式试验研究   总被引:1,自引:0,他引:1  
郭钢  刘钟  杨松  张义  卢璟春 《工业建筑》2012,42(1):123-127,122
通过室内模型试验,研究砂土中竖直埋设的扩体锚杆在不同埋深条件下的竖向拉拔破坏模式。试验结果表明,扩体锚杆经过竖向拉拔,由于深径比的不同而存在3种破坏模式。浅埋扩体锚杆破坏体近似呈倒钟形并延伸至砂层表面,破坏模式属整体剪切破坏,在工程设计中应避免采用。深埋扩体锚杆破坏体在砂层表面以下一定深度内闭合成为"椭球形",砂层表面在扩体锚杆破坏后未产生变形,破坏模式属局部剪切破坏。因此,在工程设计中扩体锚杆应采用深埋形式。在浅埋与深埋扩体锚杆之间还存在一种过渡型锚杆,其破坏体形态兼具深埋与浅埋扩体锚杆破坏体的特征,但破坏模式趋近于浅埋锚杆,因此将其归类为浅埋锚杆破坏模式中。  相似文献   

8.
隧道式锚碇的楔形结构造成锚–岩系统在不同的加载阶段表现出不同的承载能力,其中极限承载力又因锚–岩系统的破坏类型不同发掘空间巨大。首先基于一般力学原理和方法,分析锚–岩系统可能的破坏类型和隧道锚承载的阶段性,提出不同阶段隧道锚的承载力估值公式。利用数值试验和自编的破坏面追踪程序,揭示锚–岩系统的破坏演化规律,同时探究锚体结构楔形角和埋深对隧道锚的破坏面形态、破裂角和承载力的影响,主要结论如下:(1)破坏性数值试验追踪得到的锚–岩系统最终破坏形态为下窄上开口的倒喇叭形,室内2D模型试验结果验证了该破坏形态。(2)锚–岩系统的承载具有显著的三阶段特征,加载初期锚–岩界面无附加应力产生,中期界面压应力随工程荷载近似呈线性增长,加载后期界面压力随围岩破坏迅速降低。阶段承载的力学机制在于:隧道锚初始承载力仅依赖于锚体结构自身,由锚碇自重和由自重产生的界面挤压力、抗剪力两部分组成;而极限承载力取决于锚碇夹持岩体的范围,因而依赖于破坏面的位置、形态和破裂角等数据。数值试验揭示的锚–岩界面的应力随荷载变化曲线和锚–岩系统塑性区的扩展过程佐证了力学模型概化和阶段划分方法的合理性。(3)根据锚体楔形角和埋深的敏感性分析结果,发现:浅埋深、大楔形角情况下,破坏面倾向于圆台状;当埋深在35~45 m、楔形角为2°~6°时则破坏面呈喇叭状,埋深较大时倾向于界面破坏。喇叭形较窄段破裂角为2~3倍楔形角,较宽段破裂角则在20°~25°范围内,拐点位置距后锚面的距离稳定在1/2H处。(4)隧道锚的埋深不影响初始承载力,但极限承载力随埋深增加而增大;随楔形角的增加,初始承载力逐渐走低,但极限承载力呈先增后降的变化规律,表明锚碇结构存在优势角。  相似文献   

9.
砂土中锚板抗拔承载力研究   总被引:2,自引:0,他引:2       下载免费PDF全文
首先回顾了砂土中锚板抗拔承载力理论与公式,然后进行密实度不同的砂土中的模型锚板上拔试验,结合以往的研究成果,阐明了砂土密实度、锚板埋深率、锚板的几何形状和上拔倾斜角度对锚板承载能力的影响,并对锚板极限承载力的计算公式进行了评价。按照从条形锚板到矩形锚板、从竖直锚板到倾斜锚板的思路,引入形状系数和倾斜系数,提出了方便工程应用的砂土中浅埋锚板统一抗拔极限承载力计算公式,并对模型试验的尺寸效应和计算公式与现场实测的比较作了说明。  相似文献   

10.
砂土中螺旋锚上拔承载特性模型试验研究   总被引:4,自引:0,他引:4  
螺旋锚基础因其能够利用深层土体抗力且具有快速安装和承载的优势而广泛应用于各类岩土工程问题中。多锚片螺旋锚上拔承载特性受埋深、锚片间距、数量、土质条件等因素影响。相邻锚片相互影响导致土体破坏区域重叠,从而影响破坏模式和极限承载力,然而多锚片螺旋锚承载特性的理论及试验研究有限。针对砂土中螺旋锚锚片间距及数量对上拔承载特性及极限上拔承载力影响进行室内1g模型试验研究。结果表明,在中密砂及密砂中,单锚埋深比分别超过6.0和10.5时可认为是深埋锚。中密砂中深埋多片螺旋锚锚片间距在3.0D~4.5D时,各锚片承载能力能够独立发挥,承载量破坏模式发生;密砂中浅埋多片螺旋锚保证承载量破坏模式的锚片间距超过6.0D,但间距为6.0D时,螺旋锚发挥效率超过90%。增加锚片数量可适当提高上拔承载力,但当锚片数量增加使得锚片间距小于某一临界值时,柱状破坏模式发生,螺旋锚承载力不再增加;中密砂中此临界间距约为1.5D,密砂中临界间距约为2.0D。  相似文献   

11.
土层锚杆拉拔界面松动破坏分析   总被引:3,自引:0,他引:3  
根据界面黏滑本构模型假定和剪切位移法基本原理,推导了土层锚杆拉拔临界松动荷载理论公式和锚杆拉拔荷载与松动长度内在关系表达式。界面黏滑特性致使锚杆剪应力重新分配,引起荷载进一步往里端传递,加剧里端锚固体损伤劣化。依据界面抗剪强度与残余强度之间大小关系将土层锚杆拉拔松动破坏类型划分为渐进式和突发式两种形式,并给出了破坏类型定量判别标准及其所对应的锚杆拉拔极限荷载理论解。最后,结合已有的锚杆拉拔试验资料,通过计算对比分析,验证了方法的可行性。  相似文献   

12.
刚性条带式带齿加筋土的极限拉拔力模型   总被引:1,自引:0,他引:1  
张孟喜  黄超 《岩土工程学报》2009,31(9):1336-1344
"立体加筋"体系的核心就是在传统水平筋条的基础上布置不同形状的竖向筋条或三维形式的空间加筋。作为一种典型的立体加筋方式,刚性筋材的条带式带齿加筋土经三轴压缩试验、拉拔试验以及挡墙和地基模型试验证明,可以显著地提高加筋土体的强度和地基极限承载力,增强土筋的综合摩擦特性,限制土体变形。采用染色砂法,对带齿筋材的平面应变拉拔试验过程进行了观察。通过分析齿筋前方染色砂土标记线的运动情况和水平标记线的变化情况,发现在拉拔过程中,齿筋前方土体会首先被挤密加强,成一个刚性的楔体,然后周围其他土体会产生绕刚性楔体与齿筋的流动。根据齿筋的宽高比,假定了刚性楔体的形状,从而确定了绕流阻力的分布情况。借鉴沈珠江院士对于抗滑桩阻力的分析方法,推导了刚性条带式带齿加筋土的拉拔阻力模型。在应变控制式拉拔试验机上,进行了法向应力分别为25,50和75kPa的条带式带齿加筋土的拉拔试验,将试验结果与模型计算值进行比较,二者比较接近。  相似文献   

13.
为了进一步揭示全长粘结型锚杆的工作机理及影响因素在理想弹塑性模型和摩尔库伦屈服准则条件下,利用有限差分法软件FLAC - 2D模拟单根锚杆在混凝土试块上的拉拔试验,得到拉拔力与位移的关系曲线.通过参数分析,在合理的取值范围内增加锚固深度、锚杆直径、围压可以显著提高极限拉拔力.网格划分不影响极限拉拔力但对计算时间和过程精...  相似文献   

14.
Experimental and numerical investigations have been carried out on behavior of pullout resistance of embedded circular plate with and without geogrid reinforcement layers in stabilized loose and dense sands using a granular trench.Different parameters have been considered,such as the number of geogrid layers,embedment depth ratio,relative density of soil and height ratio of granular trench.Results showed that,without granular trench,the single layer of geogrid was more effective in enhancing the pullout capacity compared to the multilayer of geogrid reinforcement.Also,increasing the soil density and embedment depth ratio led to an increase in the uplift capacity.When soil was improved with the granular trench,the uplift force significantly increased.The granular trench improved the uplift load in dense sand more,as compared to the same symmetrical plate embedded in loose sand.Although it was observed that,in geogrid-reinforced granular trench condition,the ultimate pullout resistance at failure increased as the number of geogrid layers increased up to the third layer,and the fifth layer had a negligible effect in comparison with the third layer of reinforcement.Finite element analyses with hardening soil model for sand and CANAsand constitutive model for granular trench were conducted to investigate the failure mechanism and the associated rupture surfaces utilized.The response of granular material in the proposed model is an elastoplastic constitutive model derived from the CANAsand model,which uses a non-associated flow rule along with the concept of the state boundary surface possessing a critical and a compact state.It was observed that the granular trench might change the failure mechanism from deep plate to shallow plate as the failure surface can extend to the ground surface.The ultimate uplift capacity of anchor and the variation of surface deformation indicated a close agreement between the experiment and numerical model.  相似文献   

15.
新型伞状抗拔锚的制作及其试验研究   总被引:1,自引:0,他引:1  
 针对传统锚杆的不足,结合带扩大头桩锚的优点,设计出一种新型伞状抗拔装置,该装置主要由伞状锚头(可在土层中张开)和张拉锚索组成,在制作成型的基础上对其进行3组拉拔试验,其中2组用于比较伞状锚在锚头处灌浆与无浆的承载性能,1组用于比较其与竖直抗拔桩的承载性能。试验结果表明,新型伞状锚的抗拔性能要优于传统的竖直抗拔桩,且锚头灌浆伞状锚的抗拔性能最好。结合试验过程进一步对伞状锚的受力机制展开研究,结果表明,伞状锚的抗拔力主要来源于锚头兜住的土柱重力和兜住土体与未兜住土体之间的剪切摩擦两部分,由此提出伞状锚极限承载力特征值的估算公式,从而为伞状锚的工程应用奠定基础。  相似文献   

16.
目前螺旋锚桩水平拉拔承载设计计算的相关规范存在不足,理论研究中对锚片表面土压力分布的认识不统一。基于自制大型试验砂箱,开展了单螺旋锚桩的水平拉拔模型试验,直接量测分析了水平拉拔过程中锚片上下表面的土压力分布变化规律。引入考虑位移影响的锚片表面土压力近似计算方法,结合桩侧阻力p-y曲线,构建了砂土中单螺旋锚桩的水平拉拔力学模型,推导了位移相关的水平承载力计算理论。试验与计算结果表明:水平拉拔过程中,锚片表面土压力分布与测点到锚片中性轴的距离呈非线性关系,计算土压力时需考虑位移的影响;所构建的单螺旋锚桩水平承载力学模型以及基于力学平衡分析推导得出的单螺旋锚桩水平拉拔位移相关承载力计算理论在对比验证中取得了较好效果;对于工程中常用的单螺旋锚桩(桩锚直径比d/D≤5),当埋深比大于4后,可不考虑锚片的作用,按照等直径的裸桩来计算其水平承载力。  相似文献   

17.
抗拔锚板上拔过程是一个复杂的锚土相互作用过程,锚板周围土体在上拔过程中的变形破坏机制对于抗拔锚板基础的极限承载力研究具有重要意义。基于PIV(particle image velocimetry)无干扰测量技术对砂土中方形锚板上拔过程中变形场进行了测量分析,研究了抗拔锚板群锚基础的破坏机制。试验结果表明:锚板间距对群锚破坏面的形状有着重要影响;在临界间距内,以锚板上部1倍边长为拐点,剪切带先内倾然后外倾向上贯通到土体表面,群锚效应系数与S/B为线性关系,由此预测出群锚效应达到100%时的锚板间距;达到临界间距后,每个锚板的剪切场和单个锚板剪切场一致,试验结果可为群锚基础极限抗拔力的预测提供参考。  相似文献   

18.
为研究方钢管混凝土框架-十字加劲薄钢板剪力墙结构的抗震性能和水平承载力,进行了一榀缩尺比为1∶3的2层单跨方钢管混凝土框架-十字加劲薄钢板剪力墙结构的拟静力试验,得到了其破坏形态、荷载-位移滞回曲线、骨架曲线、特征荷载和位移等。利用有限元软件ABAQUS对其进行了非线性数值模拟,分析了方钢管混凝土框架-十字加劲薄钢板剪力墙的抗震性能、受力机理和破坏机制。基于试验和数值模拟结果,结合理论研究,提出了方钢管混凝土框架-十字加劲薄钢板剪力墙的水平承载力的计算式,并将其计算结果与试验、数值模拟结果进行对比。结果表明:方钢管混凝土框架-十字加劲薄钢板剪力墙具有较高的水平承载力、初始刚度及良好的延性和耗能能力,水平承载力计算式的计算结果与试验、数值模拟结果吻合较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号