首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sarah E. Hale 《Water research》2010,44(15):4529-192
Bioremediation and activated carbon (AC) amendment were compared as remediation strategies for sediment from the River Tyne containing 16.4 ± 7.3 μg/g polycyclic aromatic hydrocarbons (PAHs) and approximately 5% coal particles by total dry sediment weight. Unamended, nutrient amended (biostimulated) and nutrient and Pseudomonas putida amended (bioaugmented) sediment microcosms failed to show a significant decrease in total sediment PAH concentrations over a one month period. Polyethylene passive (PE) samplers were embedded for 21 days in these sediment microcosms in order to measure the available portion of PAHs and accumulated 4.70 ± 0.25, 12.43 ± 1.78, and 23.49 ± 2.73 μg PAHs/g PE from the unamended, biostimulated, and bioaugmented microcosms, respectively. Higher PAH uptake by PE samplers in biostimulated and bioaugmented microcosms coincided with slower degradation of spiked phenanthrene in sediment-free filtrate from these microcosms compared to filtrate from the unamended microcosms. Microbial community analysis revealed changes in the bacterial community directly following the addition of nutrients, but the added P. putida community failed to establish itself. Addition of 2% by dry sediment weight activated carbon reduced PAH uptake by PE samplers to 0.28 ± 0.01 μg PAHs/g PE, a greater than 90% reduction compared to the unamended microcosms.  相似文献   

2.
Hair has been proven to be suitable for non-destructive and non-invasive exposure assessments in human and mammal populations. A previous study with European hedgehog (Erinaceus europaeus) showed that, for some metals, hair and spine metal concentrations were positively correlated to levels in liver, kidney and muscle. Although blood has been studied in a wide variety of species, the relationship between hair and blood metal concentrations has yet to be quantified in many mammalian species. Tissue concentrations from hedgehogs residing in a park with known metal pollution were compared with those from a reference park and correlations between contaminant levels in hair and blood, and spines and blood were studied. Moreover, the relative distribution of arsenic and metals in hair, spines and blood was determined. Elevated concentrations were found in hedgehogs residing in the polluted site for As (8.2 μg/g, 6.3 μg/g, 3.6 μg/ml), Cd (0.48 μg/g, 0.17 μg/g, 0.02 μg/ml) and Pb (7.6 μg/g, 7.3 μg/g, 54 μg/ml), in hair, spines and blood respectively. Positive correlations were identified for exposure levels between hair and blood as well as between spines and blood for three elements (As, Cd, and Pb), whereas a negative correlation was found between Cr concentrations in spines and blood. In conclusion, hair and spines can be used to monitor blood concentrations of some metals, although more data are needed on uptake from the food chain and on the incorporation dynamics of these contaminants.  相似文献   

3.
Concerns over the fate and bioaccumulation of mercury (Hg) inputs to Onondaga Lake, a hypereutrophic lake in central New York, prompted an investigation into the concentrations and fluxes of Hg discharge from the Onondaga County Metropolitan Wastewater Treatment Plant (METRO WWTP). Discharge of methyl Hg (MeHg) is of concern because it is the form of Hg that readily bioaccumulates along the aquatic food chain. This study incorporated clean protocols for sampling and Hg analysis to evaluate: seasonal patterns in the concentrations of total Hg (THg) and MeHg in the WWTP unit processes; the production of MeHg within the unit processes of the WWTP; the overall fate of THg and MeHg within the WWTP; and the relative impact of the Hg discharged from the WWTP to Onondaga Lake. Concentrations of THg (range: 80-860 ng/L) and MeHg (0.7-17 ng/L) in raw sewage were highly variable, with higher concentrations observed in the summer months. The dynamics of THg though the WWTP were correlated with total suspended solids (TSS). As a result, the majority of the THg removal (55%) occurred during primary treatment. Overall, about 92% of the THg entering the plant was removed as sludge, with volatilization likely a minor component of the overall Hg budget. The transformation of MeHg through the plant differed from THg in that MeHg was not correlated with TSS, and displayed strong seasonal differences between winter (November to April) and summer (May-October) months. During the summer months, substantial net methylation occurred in the activated sludge secondary treatment, resulting in higher MeHg concentrations in secondary effluent. Net demethylation was the dominant mechanism during tertiary treatment, resulting in removal of substantial MeHg from the secondary effluent. The overall MeHg removal efficiency through the plant was about 70% with more efficient removal during summer months. Sediment trap collections made below the epilimnion of Onondaga Lake indicated average deposition rates of 12 μg/m2-day for THg and 0.33 μg/m2-day for MeHg. These deposition rates are more than an order of magnitude higher than the thermocline area normalized external loads from METRO effluent (0.85 μg/m2-day for THg, 0.05 μg/m2-day for MeHg). Our findings indicate that the impact of the discharge from METRO is relatively small, contributing about 10-15% of Hg to the total gross Hg input to the hypolimnion of the lake.  相似文献   

4.
Removal of As(V) by adsorption from water solutions was studied using three different synthetic adsorbents. The adsorbents, (a) aluminium nanoparticles (Alu-NPs, <50 nm) incorporated in amine rich cryogels (Alu-cryo), (b) molecular imprinted polymers (<38 μm) in polyacrylamide cryogels (MIP-cryo) and (c) thiol functionalised cryogels (SH-cryo) were evaluated regarding material characteristics and arsenic removal in batch test and continuous mode. Results revealed that a composite design with particles incorporated in cryogels was a successful means for applying small particles (nano- and micro- scale) in water solutions with maintained adsorption capacity and kinetics. Low capacity was obtained from SH-cryo and this adsorbent was hence excluded from the study. The adsorption capacities for the composites were 20.3 ± 0.8 mg/g adsorbent (Alu-cryo) and 7.9 ± 0.7 mg/g adsorbent (MIP-cryo) respectively. From SEM images it was seen that particles were homogeneously distributed in Alu-cryo and heterogeneously distributed in MIP-cryo. The particle incorporation increased the mechanical stability and the polymer backbones of pure polyacrylamide (MIP-cryo) were of better stability than the amine containing polymer backbone (Alu-cryo). Both composites worked well in the studied pH range of pH 2-8. Adsorption tested in real wastewater spiked with arsenic showed that co-ions (nitrate, sulphate and phosphate) affected arsenic removal for Alu-cryo more than for MIP-cryo. Both composites still adsorbed well in the presence of counter-ions (copper and zinc) present at low concentrations (μg/l). The unchanged and selective adsorption in realistic water observed for MIP-cryo was concluded to be due to a successful imprinting, here controlled using a non-imprinted polymer (NIP). A development of MIP-cryo is needed, considering its low adsorption capacity.  相似文献   

5.
Yang SF  Lin CF  Wu CJ  Ng KK  Lin AY  Hong PK 《Water research》2012,46(4):1301-1308
The sorption and biodegradation of three sulfonamide antibiotics, namely sulfamethoxazole (SMX), sulfadimethoxine (SDM), and sulfamonomethoxine (SMM), in an activated sludge system were investigated. Experiments were carried out by contacting 100 μg/L of each sulfonamide compound individually with 2.56 g/L of MLSS at 25 ± 0.5 °C, pH 7.0, and dissolved oxygen of 3.0 ± 0.1 mg/L in a batch reactor over different periods of 2 d and 14 d. All sulfonamides were removed completely over 11-13 d. Sorptive equilibrium was established well within the first few hours, followed by a lag period of 1-3 days before biodegradation was to deplete the antibiotic compounds linearly in the ensuing 10 days. Apparent zeroth-order rate constants were obtained by regression analysis of measured aqueous concentration vs. time profiles to a kinetic model accounting for sorption and biodegradation; they were 8.1, 7.9, and 7.7 μg/L/d for SDM, SMX, and SMM, respectively, at activated sludge concentration of 2.56 g/L. The measured kinetics implied that with typical hydraulic retention time (e.g. 6 h) provided by WWTP the removal of sulfonamide compounds from the wastewater during the activated sludge process would approximate 2 μg/L.  相似文献   

6.
Su Y  Mennerich A  Urban B 《Water research》2011,45(11):3351-3358
A wastewater-born and settleable algal-bacterial culture, cultivated in a stirred tank photobioreactor under lab conditions, was used to remove the carbon and nutrients in municipal wastewater and accumulate biomass simultaneously. The algal-bacterial culture showed good settleable property and could totally settle down over 20 min, resulting in a reduction of total suspended solids from an initial 1.84 to 0.016 g/l. The average removal efficiencies of chemical oxygen demand, total kjeldahl nitrogen and phosphate were 98.2 ± 1.3%, 88.3 ± 1.6% and 64.8 ± 1.0% within 8 days, respectively, while the average biomass productivity was 10.9 ± 1.1 g/m2·d. Accumulation into biomass, identified as the main nitrogen and phosphorus removal mechanism, accounted for 44.9 ± 0.4% and 61.6 ± 0.5% of total inlet nitrogen and phosphorus, respectively. Microscopic analysis showed the main algae species in the bioreactor were filamentous blue-green algae. Furthermore, denaturing gradient gel electrophoresis and 16S rDNA gene sequencing revealed that the main bacteria present in the photobioreactor were consortia with sequences similar to those of Flavobacteria, Gammaproteobacteria, Bacteroidia and Betaproteobacteria. This study explores a better understanding of an algae-bacteria system and offers new information on further usage of biomass accumulated during treatment.  相似文献   

7.
The objectives of this study were (1) to evaluate levels of lead (Pb) and cadmium (Cd) in the breast milk at 2 months postpartum, (2) to investigate the relationship between Pb and Cd levels in breast milk and some sociodemographic parameters and (3) to detect whether these levels have any influence on the infant's physical status or on postpartum depression in the mothers. Pb and Cd levels in breast milk were determined by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The median breast milk concentrations of Pb and Cd were 20.59 and 0.67 μg/l, respectively. In 125 (87%) of 144 samples, Pb levels were higher than the limit in breast milk reported by the World Health Organization (WHO) (> 5 μg/l). Breast milk Cd levels were > 1 μg/l in 52 (36%) mothers. The mothers with a history of anemia at any time had higher breast milk Pb levels than those without a history of anemia (21.1 versus 17.9 μg/l; p = 0.0052). The median breast milk Cd levels in active and passive smokers during pregnancy were significantly higher than in non-smokers (0.89, 0.00 μg/l, respectively; p = 0.023). The breast milk Cd levels of the mothers who did not use iron and vitamin supplements for 2 months postpartum were found to be higher than in those who did use the supplements (iron: 0.73, 0.00 μg/l, p = 0.023; vitamin: 0.78, 0.00 μg/l, p = 0.004, respectively). Breast milk Cd levels at the 2nd month were correlated negatively with the z scores of head circumference and the weight for age at birth (r = − 0.257, p = 0.041 and r = − 0.251, p = 0.026, respectively) in girls. We found no correlation between the breast milk Pb and Cd levels and the Edinburgh Postpartum Depression Scale scores. Breast milk monitoring programs should be conducted that have tested considerable numbers of women over time in view of the high levels of Pb in breast milk in this study.  相似文献   

8.
The Walker Creek intertidal delta of Tomales Bay, California is impacted by a former mercury mine within the watershed. Eleven short sediment cores (10 cm length) collected from the delta found monomethylmercury (MMHg) concentrations ranging from 0.3 to 11.4 ng/g (dry wt.), with lower concentrations occurring at the vegetated marsh and upstream channel locations. Algal mats common to the delta's sediment surface had MMHg concentrations ranging from 7.5 to 31.5 ng/g, and the top 1 cm of sediment directly under the mats had two times greater MMHg concentrations compared to adjacent locations without algal covering. Spatial trends in resident biota reflect enhanced MMHg uptake at the delta compared to other bay locations. Eighteen sediment cores, 1 to 2 m deep, collected from the 1.2 km2 delta provide an estimate of a total mercury (Hg) inventory of 2500 ± 500 kg. Sediment Hg concentrations ranged from pre-mining background conditions of approximately 0.1 μg/g to a post-mining maximum of 5 μg/g. Sediment accumulation rates were determined from three sediment cores using measured differences of 137Cs activity. We estimate a pre-mining Hg accumulation of less than 20 kg/yr, and a period of maximum Hg accumulation in the 1970s and 1980s with loading rates greater than 50 kg/yr, corresponding to the failure of a tailings dam at the mine site. At the time of sampling (2003) over 40 kg/yr of Hg was still accumulating at the delta, indicating limited recovery. We attribute observed spatial evolution of elevated Hg levels to ongoing inputs and sediment re-working, and estimate the inventory of the anthropogenic fraction of total Hg to be at least 1500 ± 300 kg. We suggest ongoing sediment inputs and methylation at the deltaic surface support enhanced mercury levels for resident biota and transfer to higher trophic levels throughout the Bay.  相似文献   

9.
The trace metal (TM: Cd, Cu, Ni, Pb and Zn) budget (stocks and annual fluxes) was evaluated in a forest stand (silver fir, Abies alba Miller) in north-eastern France. Trace metal concentrations were measured in different tree compartments in order to assess TM partitioning and dynamics in the trees. Inputs included bulk deposition, estimated dry deposition and weathering. Outputs were leaching and biomass exportation. Atmospheric deposition was the main input flux. The estimated dry deposition accounted for about 40% of the total trace metal deposition. The relative importance of leaching (estimated by a lumped parameter water balance model, BILJOU) and net biomass uptake (harvesting) for ecosystem exportation depended on the element. Trace metal distribution between tree compartments (stem wood and bark, branches and needles) indicated that Pb was mainly stored in the stem, whereas Zn and Ni, and to a lesser extent Cd and Cu, were translocated to aerial parts of the trees and cycled in the ecosystem. For Zn and Ni, leaching was the main output flux (> 95% of the total output) and the plot budget (input-output) was negative, whereas for Pb the biomass net exportation represented 60% of the outputs and the budget was balanced. Cadmium and Cu had intermediate behaviours, with 18% and 30% of the total output relative to biomass exportation, respectively, and the budgets were negative. The net uptake by biomass was particularly important for Pb budgets, less so for Cd and Cu and not very important for Zn and Ni in such forest stands.  相似文献   

10.
Steroids in a typical swine farm and their release into the environment   总被引:2,自引:0,他引:2  
Liu S  Ying GG  Zhou LJ  Zhang RQ  Chen ZF  Lai HJ 《Water research》2012,46(12):3754-3768
The occurrence and fate of fourteen androgens, four estrogens, five glucocorticoids and five progestagens were investigated by rapid resolution liquid chromatography-tandem mass spectrometry (RRLC-MS/MS) in a typical swine farm with lagoon waste disposal systems, in south China. Nineteen, 22 and 8 of 28 steroids were detected at concentrations ranging from 2.2 ± 0.1 ng/g (androsta-1,4-diene-3,17-dione) to 14,400 ± 394 ng/g (progesterone) in the feces samples, from 6.1 ± 2.3 ng/L (17β-boldenone) to 10,800 ± 3190 ng/L (norgestrel) in the flush water samples, and from 5.0 ± 0.2 ng/g (progesterone) to 225 ± 79.4 ng/g (5α-dihydrotestosterone) in the suspended particles, respectively. By comparing the types and concentrations of steroids in different treatment stages of the lagoon systems, it demonstrated that the lagoon systems used in the farm were not effective method to reduce various steroids in wastewater. Among the thirteen synthetic steroids detected in the swine feces and flush water, only seven (methyl testosterone, 17α-trenbolone, 17β-trenbolone, 17α-ethynyl estradiol, dexamethasone, medroxyprogesterone, and norgestrel) were regarded as the parent/metabolite compounds of animal exogenous usage. According to the estimated masses of steroids from feces and flush water, the excretion of steroids for sows were mainly from feces, but for piglets or barrows, most excreted steroids were through flush water rather than feces. The total daily excreted masses of androgens, estrogens, glucocortcoids and progestagens in the sow feces were in the range of 90.7-6310 μg/d, which were up to a thousand fold of those in the feces of other growth stages indicating that the proportion of sow number in the swine farm directly influenced the total excretion mass of steroids. In addition, two natural steroids 4-androstene-3,17-dione and progesterone were worth notice due to their relatively high concentrations per sow excretion, 277 μg/d and 6380 μg/d, respectively, which are approximately equivalent to the daily excretion of 100 persons. Some steroids were also detected in the well water, vegetable field and receiving stream, and may pose potential high risks to some sensitive organisms in the receiving environment.  相似文献   

11.
Seafood, especially fish, is considered as a major dietary source of arsenic (As). Seafood consumption is recommended for nutritional properties but contaminant exposure should be considered. The objectives were to assess As intake of frequent French seafood consumers and exposure via biomarkers. Consumptions of 996 high consumers (18 and over) of 4 coastal areas were assessed using a validated food frequency questionnaire. Seafood samples were collected according to a total diet study (TDS) sampling method and analyzed for total As, arsenite (AsIII), arsenate (AsV), arsenobetaïne (AsB), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). The average As dietary exposure is 94.7 ± 67.5 μg/kg bw/week in females and 77.3 ± 54.6 μg/kg bw/week in males (p < 0.001) and the inorganic As dietary exposure is respectively 3.34 ± 2.06 μg/kg bw/week and 3.04 ± 1.86 μg/kg bw/week (p < 0.05).Urine samples were collected from 382 of the subjects. The average urinary As concentration is 94.8 ± 250 μg/g creatinine for females and 59.7 ± 81.8 μg/g for males (p < 0.001). Samples having an As concentration above 75 μg/g creatinine (n = 101) were analyzed for inorganic As (As(III), As(V), MMA(V) and DMA(V)) which was 24.6 ± 27.9 μg/g creatinine for males and 27.1 ±20.6 μg/g for females. Analyses do not show any correlation between dietary exposure and urinary As.These results show that biological results should be interpreted cautiously. Diet recording seems to be the best way to assess dietary As exposure. Seafood is a high source of As exposure but even among high consumers it is not the main source of toxic As. From a public health point of view these results should be interpreted carefully in the absence of international consensus on the health-based guidance value.  相似文献   

12.
N-Nitrosodimethylamine (NDMA) is a suspected human carcinogen that has recently been detected in wastewater, groundwater and drinking water. Treatment of this compound to low part-per-trillion (ng/L) concentrations is required to mitigate cancer risk. Current treatment generally entails UV irradiation, which while effective, is also expensive. The objective of this research was to explore potential bioremediation strategies as alternatives for treating NDMA to ng/L concentrations. Batch studies revealed that the propanotroph Rhodococcus ruber ENV425 was capable of metabolizing NDMA from 8 μg/L to <2 ng/L after growth on propane, and that the strain produced metabolites that do not pose a significant risk at the concentrations generated (Fournier et al., 2009). A laboratory-scale membrane bioreactor (MBR) was subsequently constructed to evaluate the potential for long-term ex situ treatment of NDMA. The MBR was seeded with ENV425 and received propane as the primary growth substrate and oxygen as an electron acceptor. At an average influent NDMA concentration of 7.4 μg/L and a 28.5 h hydraulic residence time, the reactor effluent concentration was 3.0 ± 2.3 ng/L (>99.95% removal) over more than 70 days of operation. The addition of trichloroethene (TCE) to the reactor resulted in a significant increase in effluent NDMA concentrations, most likely due to cell toxicity from TCE-epoxide produced during its cometabolic oxidation by ENV425. The data suggest that an MBR system can be a viable treatment option for NDMA in groundwater provided that high concentrations of TCE are not present.  相似文献   

13.
Long-term exposure to low concentrations of disinfection byproducts (DBPs) in drinking water has been associated with increased human-health risks of bladder cancer and adverse reproductive outcomes. In this study, we investigated electrochemical reduction utilizing a resin-impregnated graphite cathode for the degradation of 17 DBPs (i.e. halomethanes, haloacetonitriles, halopropanones, chloral hydrate and trichloronitromethane) at low μg L−1 concentration levels. The reduction experiments were potentiostatically controlled at cathode potentials −700, −800 and −900 mV vs Standard Hydrogen Electrode (SHE) during 24 h. At the lowest potential applied (i.e. −900 mV vs SHE), the disappearance of DBPs from the solution after 24 h of reduction was >70%, except for chloroform (32%), 1,1-dichloropropanone (48%), and chloral hydrate (31%). Due to the participation of several removal mechanisms (e.g. electrochemical reduction, adsorption, volatilization and/or hydrolysis) it was not possible to distinguish the removal efficiencies of electrochemical reduction of individual compounds. Adsorption of the more hydrophilic DBPs (i.e. haloacetonitriles, chloral hydrate, and 1,1-dichloropropanone) onto the electrode seems to be affected by the cathode polarization, as the removals observed in the open circuit experiments were significantly higher than the ones obtained in electrochemical reduction under the same conditions. The overall efficiency of reduction was estimated based on the analyses of the released Cl, Br and I ions. Nearly complete C-I bond cleavage was achieved at all three potentials applied, and from the theoretically predicted release of I ions, calculated based on the removed DBPs, 86 ± 9 to 92 ± 1% was measured in the catholyte solution at −700 to −900 mV vs SHE. Debromination efficiencies obtained were 74 ± 3, 79 ± 6 and 68 ± 4% at −700, −800 and −900 mV vs SHE, while for C-Cl bond cleavage the obtained values were 69 ± 1, 72 ± 1 and 76 ± 4%, respectively. Nevertheless, dechlorination efficiencies are to be considered as approximate, since an increase in Cl concentration was observed in the open circuit experiments due to the hydrolysis of some of the chlorine-containing DBPs. Although the Coulombic efficiencies for DPBs dehalogenation were only 1.9 ± 0.3 (−900 mV vs SHE) -4.1 ± 0.2% (−700 mV vs SHE), relatively low energy consumption of the process was observed, estimated at 72 ± 2 Wh m−3 at −900 mV vs SHE for the concentration range of DBPs in this study (i.e. 65.3-129.7 μg L−1). The study demonstrated that reductive electrochemical treatment has the potential to be a modern remediation technology for the removal of low concentrations of halogenated DBPs in water.  相似文献   

14.
Field investigations on the treatment of MTBE and benzene from contaminated groundwater in pilot or full-scale constructed wetlands are lacking hugely. The aim of this study was to develop a biological treatment technology that can be operated in an economic, reliable and robust mode over a long period of time. Two pilot-scale vertical-flow soil filter eco-technologies, a roughing filter (RF) and a polishing filter (PF) with plants (willows), were operated independently in a single-stage configuration and coupled together in a multi-stage (RF + PF) configuration to investigate the MTBE and benzene removal performances. Both filters were loaded with groundwater from a refinery site contaminated with MTBE and benzene as the main contaminants, with a mean concentration of 2970 ± 816 and 13,966 ± 1998 μg L−1, respectively. Four different hydraulic loading rates (HLRs) with a stepwise increment of 60, 120, 240 and 480 L m−2 d−1 were applied over a period of 388 days in the single-stage operation. At the highest HLR of 480 L m−2 d−1, the mean concentrations of MTBE and benzene were found to be 550 ± 133 and 65 ± 123 μg L−1 in the effluent of the RF. In the effluent of the PF system, respective mean MTBE and benzene concentrations of 49 ± 77 and 0.5 ± 0.2 μg L−1 were obtained, which were well below the relevant MTBE and benzene limit values of 200 and 1 μg L−1 for drinking water quality. But a dynamic fluctuation in the effluent MTBE concentration showed a lack of stability in regards to the increase in the measured values by nearly 10%, which were higher than the limit value. Therefore, both (RF + PF) filters were combined in a multi-stage configuration and the combined system proved to be more stable and effective with a highly efficient reduction of the MTBE and benzene concentrations in the effluent. Nearly 70% of MTBE and 98% of benzene were eliminated from the influent groundwater by the first vertical filter (RF) and the remaining amount was almost completely diminished (∼100% reduction) after passing through the second filter (PF), with a mean MTBE and benzene concentration of 5 ± 10 and 0.6 ± 0.2 μg L−1 in the final effluent. The emission rate of volatile organic compounds mass into the air from the systems was less than 1% of the inflow mass loading rate. The results obtained in this study not only demonstrate the feasibility of vertical-flow soil filter systems for treating groundwater contaminated with MTBE and benzene, but can also be considered a major step forward towards their application under full-scale conditions for commercial purposes in the oil and gas industries.  相似文献   

15.
In 1943 the German hospital ship s/s Stuttgart (Lazaretschiff “C”) was sunk close to the port of Gdynia (Gulf of Gdańsk — Polish coast). This and other actions (undertaken after the war to remove the wreck) led to pollution of the sea bottom with oil derivatives.During our studies (2009) 11 surface sediment and water samples were collected as well as sediment core samples at 4 locations in order to determine the concentration levels of priority pollutants belonging to polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB). The concentrations of 16 PAH and 7 PCB were analysed with GC-MS. ΣPAH varied between 11.54 ± 0.39 and 206.7 ± 6.5 mg/kg dry weight in the surface sediments, and from 0.686 ± 0.026 to 1291 ± 53 mg/kg dry weight in the core samples. Contamination in the core samples collected may reach a depth of at least 230-240 cm (deepest sample studied). The PAH-group profiles in all surface sediment samples suggest a pyrolytic source of PAH, while the results obtained for core samples indicate a mixed pattern of pyrolytic and petrogenic inputs of PAH. Results obtained may suggest also that fuel residues being present at sea bottom is not crude oil derived but results from coal processing (synthetic fuel). The sum of PCB in surface sediments ranged from 0.761 ± 0.068 to 6.82 ± 0.28 μg/kg dry weight (except for sampling point W2, where ΣPCB was 108.8 ± 4.4 μg/kg dry weight). The strong correlation between PAH and PCB levels, and the fact that PCB are present only in the surface sediments, suggest that the compounds in these sediments got there as a result of emission from urban areas, entering the aquatic environment via atmospheric deposition. PCB levels in the sediment core samples were generally very low and in most cases did not exceed the method quantification limit.  相似文献   

16.
In this study, concentrations and profiles of organic pollutants were investigated in a passerine species with a large clutch size, the great tit (Parus major). In the first clutches, mean egg concentrations decreased significantly in relation to the laying order from 3025 ± 416 ng/g lw to 2267 ± 386 ng/g lw for sum PCBs and from 989 ± 339 ng/g lw to 695 ± 320 ng/g lw for sum DDTs. Sum PBDE concentrations also decreased in relation to the laying order from 68 ± 10 ng/g lw to 53 ± 11 ng/g lw, but not significantly. Although laying order effects were found, variation in concentrations within clutches was smaller than among clutches. To further investigate the impact of laying large numbers of eggs on levels and profiles of organic pollutants, initiation of replacement clutches was experimentally induced. Mean sum PCB and sum PBDE concentrations were significantly lower in eggs of replacement clutches compared to first clutches. In addition, first clutches had a higher contribution of the higher chlorinated and more persistent PCB congeners, CB 170, 180 and 183, and a lower contribution of CB 52, 95 and 149 compared to replacement clutches. Because of the differences in concentrations and profiles between the first and replacement clutches, the combined use of eggs from both the first and replacement clutches for monitoring purposes is not recommended. In conclusion, we suggest that, due to the larger variation among clutches compared to the variation within clutches, one randomly collected great tit egg from a first clutch is useful as a biomonitoring tool for organic pollutants. To our knowledge, this is the first study in which the impact of an experimentally increased clutch size on the levels and profiles of contaminants in eggs has been investigated.  相似文献   

17.
Since 1996, 52,202 water samples from hand tubewells were analyzed for arsenic (As) by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS) from all 64 districts of Bangladesh; 27.2% and 42.1% of the tubewells had As above 50 and 10 μg/l, respectively; 7.5% contained As above 300 μg/l, the concentration predicting overt arsenical skin lesions. The groundwater of 50 districts contained As above the Bangladesh standard for As in drinking water (50 μg/l), and 59 districts had As above the WHO guideline value (10 μg/l). Water analyses from the four principal geomorphological regions of Bangladesh showed that hand tubewells of the Tableland and Hill tract regions are primarily free from As contamination, while the Flood plain and Deltaic region, including the Coastal region, are highly As-contaminated. Arsenic concentration was usually observed to decrease with increasing tubewell depth; however, 16% of tubewells deeper than 100 m, which is often considered to be a safe depth, contained As above 50 μg/l. In tubewells deeper than 350 m, As >50 μg/l has not been found. The estimated number of tubewells in 50 As-affected districts was 4.3 million. Based on the analysis of 52,202 hand tubewell water samples during the last 14 years, we estimate that around 36 million and 22 million people could be drinking As-contaminated water above 10 and 50 μg/l, respectively. However for roughly the last 5 years due to mitigation efforts by the government, non-governmental organizations and international aid agencies, many individuals living in these contaminated areas have been drinking As-safe water. From 50 contaminated districts with tubewell As concentrations >50 μg/l, 52% of sampled hand tubewells contained As <10 μg/l, and these tubewells could be utilized immediately as a source of safe water in these affected regions provided regular monitoring for temporal variation in As concentration. Even in the As-affected Flood plain, sampled tubewells from 22 thanas in 4 districts were almost entirely As-safe. In Bangladesh and West Bengal, India the crisis is not having too little water to satisfy our needs, it is the challenge of managing available water resources. The development of community-specific safe water sources coupled with local participation and education are required to slow the current effects of widespread As poisoning and to prevent this disaster from continuing to plague individuals in the future.  相似文献   

18.
The removal of heavy metals from electroplating wastewater is a matter of paramount importance due to their high toxicity causing major environmental pollution problems. Nanoscale zero-valent iron (NZVI) became more effective to remove heavy metals from electroplating wastewater when enhanced chitosan (CS) beads were introduced as a support material in permeable reactive barriers (PRBs). The removal rate of Cr (VI) decreased with an increase of pH and initial Cr (VI) concentration. However, the removal rates of Cu (II), Cd (II) and Pb (II) increased with an increase of pH while decreased with an increase of their initial concentrations. The initial concentrations of heavy metals showed an effect on their removal sequence. Scanning electron microscope images showed that CS-NZVI beads enhanced by ethylene glycol diglycidyl ether (EGDE) had a loose and porous surface with a nucleus-shell structure. The pore size of the nucleus ranged from 19.2 to 138.6 μm with an average aperture size of around 58.6 μm. The shell showed a tube structure and electroplating wastewaters may reach NZVI through these tubes. X-ray photoelectron spectroscope (XPS) demonstrated that the reduction of Cr (VI) to Cr (III) was complete in less than 2 h. Cu (II) and Pb (II) were removed via predominant reduction and auxiliary adsorption. However, main adsorption and auxiliary reduction worked for the removal of Cd (II). The removal rate of total Cr, Cu (II), Cd (II) and Pb (II) from actual electroplating wastewater was 89.4%, 98.9%, 94.9% and 99.4%, respectively. The findings revealed that EGDE-CS-NZVI-beads PRBs had the capacity to remediate actual electroplating wastewater and may become an effective and promising technology for in situ remediation of heavy metals.  相似文献   

19.
Metal removal from contaminated effluents was examined following reaction with natural apatites of biological and geological origin or a synthetic hydroxylapatite (HAP). Mammalian meat and bone meal (MBM), a by-product from meat industry, was the biological apatite source. The effect of incineration on metal removal capacity of MBM and HAP was also examined. The reactivity of apatites for all tested metals (Pb, Cd, Cu and Zn) followed the general order: synthetic > biological > mineral. For all apatites tested, Pb was removed best and preferentially from multi-metal solutions. MBM and HAP (0.5 g solid) removed Pb completely from both highly concentrated single metal solutions (50 ml, 1000 mg/L Pb) and from multi-metal solutions (50 ml) with 100 mg/L each of Cd, Cu and Zn in addition to Pb. The incineration of MBM (725 °C and 850 °C) reduced significantly its capacity for removal of Zn (by 47%, from 56 mg/g to 9 mg/g) and Cd (by 38%, from 53 mg/g to 13 mg/g) in particular and to a lesser extent for Cu (by 14%, from 61 mg/g to 46 mg/g) while the removal of Pb was not affected (100 mg/g). The same pattern was observed for incinerated HAP. SEM and XRD analysis indicated that HAP reacted with the metals by precipitation of pure metal phosphates—Pb hydroxylapatite, Zn phosphate (hopeite), a Cd phosphate (identified only by ED-SEM) and Cu phosphate (libenthenite).  相似文献   

20.
Vacuum collected black (toilet) water contains hormones and pharmaceuticals in relatively high concentrations (μg/L to mg/L range) and separate specific treatment has the potential of minimizing their discharge to surface waters. In this study, the fate of estrogens (natural and synthetical hormones) and pharmaceuticals (paracetamol, metoprolol, propranolol, cetirizine, doxycycline, tetracycline, ciprofloxacin, trimethoprim, carbamazepine, ibuprofen and diclofenac) in the anaerobic treatment of vacuum collected black water followed by nitrogen removal by partial nitritation-anammox was investigated. A new analytical method was developed to detect the presence of several compounds in the complex matrix of concentrated black water. Detected concentrations in black water ranged from 1.1 μg/L for carbamazepine to >1000 μg/L for paracetamol. Anaerobic treatment was only suitable to remove the majority of paracetamol (>90%). Metoprolol was partly removed (67%) during aerobic treatment. Deconjugation could have affected the removal efficiency of ibuprofen as concentrations even increased during anaerobic treatment and only after the anammox treatment 77% of ibuprofen was removed. The presence of persistent micro-pollutants (diclofenac, carbamazepine and cetirizine), which are not susceptible for biodegradation, makes the application of advanced physical and chemical treatment unavoidable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号