首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
页岩含气量理论图版   总被引:7,自引:0,他引:7  
页岩含气量主要包括游离气含量和吸附气含量,其中游离气含量的影响因素有孔隙度、含气饱和度、密度、压力、温度等,而影响吸附气含量的因素有有机碳含量、有机质成熟度、压力、温度等。不同有机质类型的页岩吸附能力(吸附量/有机碳含量)差别较大,且Ⅲ型>Ⅱ型>Ⅰ型,并分别建立了游离气含量和吸附气含量的计算公式。为了快速、准确地获取页岩含气量,分析并筛选了页岩含气量主控关键参数,基于含气量理论计算公式等相关理论计算得出不同有机质类型的页岩含气量图版。总体上,页岩含气量随深度增加而变大,但变大趋势逐渐降低。页岩含气量图版理论值与页岩现场测试含气量相关性拟合表明图版具有广泛的实用性。在页岩气勘探初期地质参数较少的情况下,页岩含气量图版的建立从理论上预测含气量,为合理评价页岩气资源潜力和预测有利区提供了依据。  相似文献   

2.
采用容积法计算页岩气井原始天然气地质储量(OGIP)需要分别考虑吸附气含量、游离气含量、溶解气含量及有效页岩体积等4个方面的因素。为了提高页岩气单井OGIP的计算准确度和可信度,修正了计算吸附气含量、游离气含量的校正公式;分析溶解气取舍的条件,得出了地层水中和页岩油中溶解气含量的计算公式;并在页岩气井有效页岩体积计算方法比对的基础上,应用修正后的公式对四川盆地某页岩气井的地质储量进行了计算和评价。结果表明:(1)页岩气井有效页岩体积采用改造储层体积(SRV)能够在很大程度上提高单井储量计算的可信度;(2)计算吸附气含量时,应基于温度、压力、总有机碳含量对兰格缪尔吸附能力及压力进行校正;(3)计算游离气含量时,真实孔隙体积等于绝对孔隙体积减去油、水、吸附相体积;(4)溶解气含量的取舍应视地质储量级别而定,若其级别低,溶解气含量可以忽略,反之则应考虑溶解气含量。结论认为:(1)修正后的吸附气含量、游离气含量校正公式更加合理;(2)分层计算气体含量、采用SRV作为有效页岩体积,使得最终计算的单井OGIP可信度显著提高;(3)与动态储量对比,单井OGIP能预判该井是否出现生产问题,并据此指导气井日常工作制度调整。  相似文献   

3.
通过经验公式法、等温吸附法、多元线性回归法等方法,对比了鄂尔多斯盆地东南部长7段页岩气不同相态含气量特征,建立了含气量与影响因素之间定性或定量关系,探讨了各相态含气量的主控因素。研究表明,研究区长7段泥页岩吸附气、游离气和溶解气平均含量分别为1.37 m3/t,1.81 m3/t和0.74 m3/t,吸附气含量由西南向东北方向递减,游离气和溶解气含量由西北向东南方向逐渐递减。总有机碳含量是控制长7段泥页岩吸附气含量的主要因素;矿物质中伊蒙混层对吸附气含量有重要影响;随着有机质成熟度增加,残余液态烃大量出现,吸附气和游离气含量减少,溶解气含量增加;中—大孔的孔隙体积是游离气和溶解气含量的主控因素,砂岩夹层和脆性矿物石英、长石等影响中—大孔占比,进而影响游离气和溶解气含量。  相似文献   

4.
页岩气主要以游离气和吸附气形式存在于富含有机质页岩中,含气量的大小受页岩储集层压力、温度等多种因素影响。页岩吸附气量是评价页岩气资源量的关键性参数,也是评价页岩气是否具有开采价值的一项重要标准。在分析页岩气吸附与解吸机理的基础上,开展F页岩气田龙马溪组-五峰组岩心等温吸附、解吸实验研究,实验结果表明:利用等温吸附线法是获得朗氏体积(VL)和朗氏压力(pL)的有效途径;钻井现场页岩快速解吸获得的总含气量主要为吸附气量,游离气量占比较小;页岩朗氏体积(VL)与样品的有机碳含量(Cto)成正相关,达到饱和吸附后温度升高,吸附能力明显下降。  相似文献   

5.
页岩含气量对页岩气田储量计算至关重要,直接关系到页岩气的产量、递减规律等。页岩气以游离气和吸附气形式赋存,有重量法等温吸附、容量法等温吸附、现场含气量测试等不同方法测试吸附气、游离气。通过测试页岩气降压解吸过程中气体体积变化来测量吸附气量,首次建立了同时测试页岩吸附气、游离气的方法。该方法采用柱状页岩岩心,模拟不同温度、压力、含水、真实孔隙结构等条件,消除了等温吸附曲线的负吸附异常;分析了有机质含量、压力、温度、含水、气体组成等因素对页岩吸附量的影响。实验结果表明,页岩的甲烷吸附量随压力增加而增加,压力大于12MPa后达到吸附/解吸动态平衡,吸附量不再增加;有机质含量TOC增加时吸附量增加;温度增加时吸附量降低;页岩含水后吸附量降低;甲烷吸附量高于氮气吸附量;焦石坝龙马溪组主力层页岩在温度20℃、压力30MPa下页岩气吸附气量介于1.8~3.1m~3/t之间,总含气量介于5.1~6.5m~3/t之间,吸附气占总气量40%左右。  相似文献   

6.
运用直接解吸法和间接法计算柳坪171井延长组长7段、长8段、长9段页岩游离气含量、吸附气含量和总气量,结合分析延长组页岩岩矿组分、有机地球化学特征、孔隙结构与孔隙体积,确定了延长组陆相页岩含气量及主控因素,并对含气量与主控因素之间关系做了定性及半定量研究。结果表明:延长组页岩含气量以吸附气量为主,其中长7段页岩含气量为3.71~6.26m3/t,游离气百分比为22.53%~35.29%,平均为29.22%;长8段页岩含气量为3.68~5.19m3/t,游离气占总含气量的24.43%;长9段页岩含气量最高,为5.57~7.80m3/t,游离气含量比例为31.64%。随着有机碳含量的增加,可供天然气吸附的比表面增大,页岩吸附气量也增大,同时有机质成熟度的提高促进有机组分纳米级孔隙的产生,从而增加页岩气储集空间,因此有机碳含量、镜质体反射均与含气量呈正相关关系。与海相页岩不同,延长组陆相页岩石英主要来源于陆源碎屑,含气量与石英含量呈负相关关系。黏土矿物含量与含气量呈弱正相关,主要表现在伊蒙混层、伊利石对页岩气的吸附能力。含气量与微孔体积相关性不明显,与中孔和宏孔均具有正相关关系。  相似文献   

7.
通过页岩样品的等温吸附实验,计算了延长组页岩的吸附气含量,通过建立公式和测井综合解释计算了延长组页岩的游离气含量和溶解气含量,结果表明延长石油探区延长组页岩总含气量为2.25~5.08 m3/t,其中吸附气含量为1.75~4.21 m3/t,游离气含量为0.20~0.60 m3/t,溶解气含量为0.05~0.52 m3/t.通过不同赋存状态页岩气与多个地质因素的相关性分析,认为吸附气含量主要受控于温度、压力、总有机碳含量和含水饱和度,游离气含量主要受控于孔隙度和含气饱和度,溶解气含量主要受控于残余油含量、温度、压力、天然气相对密度和原油相对密度。建立了延长石油探区不同赋存状态页岩气总含气量综合预测模型,用现场解吸法获得的总含气量的实测值进行检验,证实页岩总含气量综合预测模型可靠性较高。  相似文献   

8.
关于页岩含气量确定方法的探讨   总被引:4,自引:0,他引:4  
页岩含气量是页岩气资源评价和有利区优选的关键性参数,也是评价页岩是否具有开采价值的一个重要标准。对页岩含气量的获取方法进行了介绍,其一是通过解吸法分别测量解吸气、残余气和损失气;其二是利用等温吸附实验、测井解释等方法分别计算页岩中的吸附气、游离气含量。分析认为:解吸法测量结果容易受到取心方式、测定方法、损失气量计算方法、气体解吸温度等因素的影响,所测得的总含气量比间接法更接近于真实值;吸附气量的估算需要综合考虑有机碳含量、粘土矿物组分、成熟度、温度和压力等因素对页岩吸附能力的影响,建立适当的吸附气含量计算模型,游离气量估算的关键是确定页岩的有效孔隙度和含气饱和度。建立针对页岩含气量测试技术和等温吸附实验技术标准,量化各种控制因素对页岩含气量的影响,对准确评价页岩含气量具有重要意义。  相似文献   

9.
地层条件下页岩气主要以吸附和游离两种形式存在,确定页岩气的吸附-游离比例,对于评价页岩含气量及合理制定页岩气开发方案有着重要意义。对涪陵地区五峰组-龙马溪组页岩气而言,目前仍缺乏对其吸附-游离量的精细评价,对吸附-游离气的影响因素及转化规律尚未有清晰的认识。因此,在分析涪陵页岩吸附-游离气影响因素的基础上,建立根据页岩物质定量表达最大吸附量的模型,并选用微孔填充模型表征页岩绝对吸附量,评价实际吸附气和游离气含量,计算吸附-游离气比例。并研究了温压、TOC、含水饱和度、孔隙度等因素对吸附-游离气转化的影响,探讨不同条件下页岩吸附-游离气之间的相互转化。研究表明,涪陵地区五峰组-龙马溪组页岩由浅层到深层吸附气量逐渐增多,但随着深度进一步增加,页岩绝对吸附量不再变化;研究区页岩吸附气比例平均值约34%。在2 000~3 500 m深度范围内比较单一因素对吸附-游离气转化的影响,发现孔隙度、TOC对吸附比例影响显著,含水饱和度的影响次之,而压力系数改变对吸附气比例的影响最弱。  相似文献   

10.
近年来我国页岩气勘探开发逐渐走向深层,但对高温高压条件下页岩吸附特征、游离气的赋存特征还不清楚,制约了深层页岩气大规模开发。以四川盆地威荣、永川地区深层页岩为研究对象,对不同有机碳含量和孔隙度的样品开展了高温高压(135 ℃、80 MPa)等温吸附实验和孔隙度实验,计算了页岩吸附气量、游离气量和总含气量的理论值,并与实际值进行对比。研究表明:①页岩吸附气含量随着压力增大逐渐增加,当压力大于40 MPa后,吸附气量增加趋于平缓,最大可达4.46 cm3/g。②页岩理论含气量随着地层压力的增加而增加,当地层压力达到80 MPa时总含气量达到最大,此时理论最大值为11.3 cm3/g;计算的游离气含量为6.8 cm3/g,吸附气含量为4.5 cm3/g,分别约占总含气量的60%和40%;游离气/吸附气比例随深度增加逐渐增加。③基于现场解吸实验,实测威页11-1井总含气量最大值为5.95 cm3/g,最小值为3.29 cm3/g,平均为4.52 cm3/g,对比理论含气量10.3 cm3/g,表明有近50%的气体在抬升过程中散失,同时一定程度上也说明了深层页岩气保存条件的复杂性,建议加强对保存条件的研究。   相似文献   

11.
针对鄂尔多斯盆地中部地区长7段页岩热演化偏低以及页岩气赋存特征复杂的问题,利用基本地球化学方法以及气体解析实验开展对比性研究,揭示页岩气的地球化学特征,探索页岩气的赋存过程。研究结果表明:页岩的有机质类型主要为Ⅰ型和Ⅱ1型,热演化程度为中等,有机碳含量平均为4.52%,游离烃含量为4.09 mg/g,热解烃含量为8.70 mg/g;研究区页岩气属于油型气,其地质成因为热解成因;页岩气的赋存相态为游离气、溶解气和吸附气共存,且吸附气含量和溶解气含量之和大于游离气含量;页岩对不同气体的吸附性能具有较大差异,对氮气的吸附性最弱;烃类气体中,小分子气体的初次运移能力强于大分子气体。由于热演化程度偏低,一方面使得页岩内部油气水共存,整体含气性不高,另一方面使得油气在地质运动过程中得以大量保存。在针对长7段的开发过程中,进行页岩油气的共同开发最具有现实意义和经济价值。研究结果对长7段下步勘探开发具有一定的指导意义。  相似文献   

12.
计算水驱气藏地质储量和水侵量的简便方法   总被引:4,自引:0,他引:4  
水驱气藏地质储量和水侵量是确定气藏开发规模和开发设计的重要参数,因此如何准确计算显得非常重要。应用视地质储量法, 不需要知道水侵量的大小, 仅应用生产动态数据, 通过绘制气藏视地质储量变化曲线就可以计算地质储量, 再把计算得到的地质储量带入视地质储量计算公式可以反求水侵量的值, 计算方法简便。通过实例分析及对比验证说明该方法计算结果准确。  相似文献   

13.
页岩油的赋存状态与有机地球化学特征对页岩油的甜点区评价与资源潜力评估具有重要意义。为明确鄂尔多斯盆地延长组长73亚段泥页岩中页岩油的赋存位置、含油量、族组分和饱和烃分布特征,选取长73亚段的泥页岩岩心样品进行多溶剂连续分级抽提、低温氮气吸附—解吸、荧光薄片鉴定、场发射扫描电镜和饱和烃气相色谱—质谱等分析。结果表明:长73亚段泥页岩型页岩油主要赋存于页理缝和有机质孔中;页岩油的含油总量大于10 mg/g,其中游离油约占50%,吸附油约占20%;游离油、吸附油含量与有机质丰度之间呈较好的正相关关系,表明有机质丰度是控制页岩油分布的主要因素;游离油含有较多的饱和烃和轻质组分,而吸附油则含有较多的非烃与沥青质等重质组分。此外,与暗色泥岩相比,黑色页岩具有广泛发育的页理缝和有机质孔,游离油含量较高,黑色页岩可能是更有利于页岩油勘探开发的岩相类型。  相似文献   

14.
考虑地层温度和压力的页岩吸附气含量计算新模型   总被引:4,自引:0,他引:4  
页岩气在页岩储层中的赋存方式主要以吸附和游离为主,页岩吸附气含量是页岩气资源评价和目标区优选的关键性参数,也是评价页岩是否具有开采价值的一个重要标准。通过室内不同温度下的等温吸附实验,获得页岩等温吸附特征曲线及Langmuir体积和Langmuir压力值,分析温度对页岩吸附气含量的影响程度,利用Langmuir模型计算地层压力条件下的吸附气含量。根据温度、压力、TOC值、RO值与吸附气含量之间的关系,建立考虑地层温度、压力、有机碳含量和成熟度4个因素的页岩吸附气含量计算新模型。新模型可计算任意埋藏深度下的页岩吸附气含量,埋藏深度越大,页岩吸附气含量越小。最后应用某一页岩气藏基础资料进行实例分析,建立得到的温度、压力、TOC值、RO值与页岩吸附气含量的复相关系数可达0.9以上。通过新模型计算未知页岩吸附气含量的页岩,计算结果准确可靠,能正确评价页岩气资源量,可以作为一种计算页岩吸附气含量的新方法。同时采用新的页岩吸附气含量计算模型,弥补了目前普遍采用没有考虑地层温度的等温吸附实验方法所获取吸附气含量的不足,具有重要的现实意义。  相似文献   

15.
在页岩气开采过程中,随着地层压力的下降,页岩气会发生解吸作用,而常规气藏的生产数据分析并没有考虑气体吸附导致的偏差因子和综合弹性压缩系数的改变,因此用常规气藏分析方法很难得到准确的天然气地质储量(OGIP).在langmuir等温吸附理论基础上,应用King(1990)和S.MOghadam(2009)方法对偏差因子进行了修正,并应用Bumb&McKee(1986)方法对综合弹性压缩系数进行了修正,然后应用修正Palacio-Blasingame图版拟合方法、修正物质平衡方法(FMB)和修正Ibrahim&Wattenbarger不稳定线性流方法等三种方法对页岩气井生产数据进行了分析并计算了OGIP.前两种方法主要应用的页岩气井晚期边界流控制的生产数据,后种方法应用的是页岩气井早期的不稳定线性流数据.把VBA和RAT软件作为基本工具,结合上面三种方法,分别计算了某页岩气井考虑吸附作用和不考虑吸附作用的OGIP(原始天然气储量).实例计算表明,当分析页岩气井生产数据时,不考虑页岩气吸附作用将会低估OGIP.用上面三种方法计算得考虑气体吸附得到的OGIP比不考虑吸附得到的OGIP分别提高了13.22%、11.06%和4.89%.  相似文献   

16.
页岩气测井评价研究——以川东南海相地层为例   总被引:2,自引:0,他引:2  
张培先 《特种油气藏》2012,19(2):12-15,135
页岩气主要以游离和吸附方式赋存于暗色泥页岩或炭质泥页岩中。其中,游离气一般赋存于泥页岩的孔隙或裂缝中,而吸附气主要赋存于泥页岩中的有机质或黏土颗粒表面。依据不同测井曲线的基本原理,结合实验测试,利用测井技术对页岩气进行识别分析与评价,并分别计算出游离气含量和吸附气含量。通过研究分析,提出了计算页岩游离气含量"四步法"和吸附气含量"三步法"。依据建立的页岩气测井评价模型,以川东南海相页岩地层为例进行技术应用,取得了良好的效果。  相似文献   

17.
确定异常高压气藏地质储量和可采储量的新方法   总被引:7,自引:1,他引:6  
基于文献[1]的定容,封闭,异常高压气藏的物质平衡方程式,提出了确定异常高压气藏原始地质储量,可采储量和采收率的新方法,通过实例的应用和对比表明,提供的新方法是适用的有效的。  相似文献   

18.
页岩含气量评价方法   总被引:6,自引:0,他引:6  
作为页岩气资源勘探评价的核心基础,含气量的评价一直作为关键研究内容而受到高度关注。页岩气的成藏和富集是一个动态地质过程,游离和吸附状态天然气的同时存在及比例变化,导致了页岩中天然气赋存状态的复杂性。页岩含气机理与煤层气差异较大,直接和间接成因的页岩气类型各具不同的页岩油气形成条件和含气特点。垂向上的页岩含气相关指征曲线变化特点,可提供更多的沉积、含气及保存等信息。页岩含气量的获得方法可划分为6种基本类型,归属于3个可信度梯度级别,其中的现场解析法是含气量获取方法中的重要方法。在现场解析的升温过程中,只有当岩心在加热至地层温度前见解吸气者,通过线性或多项式逆向回归法计算出来的损失气量才具有明确物理意义。页岩的含气量受页岩的生气能力和强度控制,损失气、解吸气及残余气分别与吸附气和游离气存在内在联系。页岩吸附含气量和总含气量是页岩含气量地质评价中的重要参数,页岩气中游离气的占比不仅能反映页岩中天然气的赋存状态,而且更指示了页岩气的可采性。同时满足总含气量和游吸比双高目标的评价对象,是页岩气的有利目标。含气量、游吸比及可采系数等含气结构参数的同时使用,有助于更准确地进行页岩气评价。机器学习和大数据分析等提高了数据处理工作效率,智能评价是页岩含气量评价研究未来发展的重要方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号