首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
采用磷元素对载体进行改性,以等体积浸渍法制备了煤油芳烃饱和催化剂,并用BET、XRD、H_2-程序升温还原、漫反射紫外可见光谱手段对催化剂进行表征。考察了不同反应温度、反应压力下的催化剂芳烃饱和活性,并与未改性催化剂和参比剂进行了对比。结果表明:反应压力为6.0 MPa左右较为适宜,调整反应温度是装置工艺条件优化的主要手段,磷改性后催化剂的芳烃饱和活性与未改性催化剂及参比剂相比有明显的提高。  相似文献   

2.
采用磷元素对载体进行改性,以等体积浸渍法制备了以Mo-Ni为活性组分的喷气燃料加氢精制催化剂,并使用X射线衍射、程序升温氨脱附、红外光谱等手段对催化剂及载体进行了表征。结果表明:改性后的催化剂上活性金属分散良好,没有出现活性金属特征峰;改性后的催化剂酸强度减弱,脱附峰从110℃前移至100℃;载体表面的L酸大部分转化为B酸,有利于减弱催化剂的裂解倾向。在反应温度255℃、氢分压4.0 MPa、体积空速3.0 h~(-1)、氢油体积比200∶1的工艺条件下,磷改性催化剂的脱硫率91.2%,硫醇硫脱除率97.5%,均优于未改性催化剂和国内主流参比剂,同时在降酸值方面优势更为明显。1 500 h评价结果表明,加氢产品硫含量、硫醇硫含量及酸值保持稳定,催化剂的活性稳定性良好,完全满足工业应用要求。  相似文献   

3.
采用磷元素对载体进行改性,并制备出微晶蜡加氢精制催化剂,考察了磷元素对载体和催化剂性能的影响,在滴流床加氢试验装置上进行了催化剂加氢活性和稳定性评价实验。结果表明:磷元素可使载体表面L酸转化为B酸,提高了催化剂加氢活性,还能有效提高催化剂上活性金属的分散性,使催化剂的高、低温还原峰向低温方向移动,有利于形成高活性催化中心;磷改性催化剂加氢产品的含油量、颜色、光安定性、稠环芳烃含量等指标优于未改性催化剂,活性稳定性可满足工业应用要求。  相似文献   

4.
NiW/CTS-n催化剂的加氢脱芳性能研究   总被引:3,自引:1,他引:2  
采用溶胶-凝胶结合CO2超临界干燥的方法制备了TiO2-SiO2(CTS-n)复合氧化物载体,采用分步浸渍法制得了柴油加氢精制催化剂NiW/CTS-n,以四氢萘/正庚烷溶液为芳烃模型化合物,考察了NiW/CTS-n催化剂的脱芳烃性能。结果表明,具有较高Lewis酸含量的NiW/CTS-n催化剂具有好的脱芳烃性能;采用磷(P)与分子筛改性的方法及提高金属担载量或提高金属分散程度,可以提高催化剂的脱芳烃性能;以HY分子筛改性的NiW/CTS-n催化剂对大庆重油催化裂化柴油中的各类芳烃有更好的加氢饱和性能,可以更大幅度地提高十六烷值。  相似文献   

5.
为了满足炼油企业柴油质量升级的要求,在成功开发改性氧化铝载体的基础上,通过优化组合活性金属组分、改进催化剂金属浸渍技术,开发出了新一代FHUDS-6柴油深度加氢精制催化剂。该催化剂以Mo-Ni为活性组分,具有孔容大、比表面积高、机械强度高等特点,适宜加工高干点直馏柴油、焦化柴油及FCC柴油等劣质柴油原料。中试结果表明:与FHUDS-2催化剂相比,FHUDS-6催化剂相对脱硫、脱氮活性高,芳烃饱和能力强,达到相同脱硫深度时,反应温度降低10℃以上,同时具有很好的活性稳定性及原料适应性。工业应用结果表明:FHUDS-6催化剂具有优异的加氢精制活性,产品十六烷值提高幅度大,是生产国Ⅲ、国Ⅳ及欧Ⅴ标准清洁柴油的理想加氢精制催化剂。  相似文献   

6.
以改性氧化铝为载体,采用络合浸渍法,制备出低金属含量、高选择性脱硫催化剂。以催化裂化脱固油浆为原料,在反应温度为290~320℃,反应压力为6 MPa,氢油体积比为1 000∶1,体积空速为1.0 h-1的条件下,考察了所制备催化剂的选择性脱硫性能。结果表明:浸渍过程中添加酸性有机助剂,催化剂孔道拓宽,酸性增强,载体与活性金属相互作用增强;浸渍过程中添加碱性有机助剂,催化剂孔道拓宽,酸性降低,载体与活性金属相互作用减弱,有利于活性金属硫化形成更多活性位,催化剂的脱硫性能明显增强;在反应温度为320℃时,采用碱性络合剂制备的催化剂,加氢后产品含硫量降至4 970μg/g,脱硫率为55.6%,3~4环芳烃质量分数为42.1%,保留率为83.9%,适合作为优质针状焦原料。  相似文献   

7.
采用纳米尺度钛化物对载体进行改性,以等体积浸渍法制备了喷气燃料加氢精制催化剂,用XRD、NH_3-TPD、Py-IR等手段对催化剂进行了表征。在相同工艺条件下,与未改性催化剂和国内主流参比剂进行加氢活性对比,结果表明,钛改性催化剂主要产品指标均优于对比催化剂,催化剂其他各项指标满足工业应用要求。  相似文献   

8.
利用氧化铝与分子筛复合载体负载硝酸镍和偏钨酸铵得到催化裂化柴油超低硫加氢精制催化剂,采用XRD,BET,XRF等方法对催化剂进行表征。表征结果显示,催化剂的表面具有L酸和B酸,孔径主要为4~10 nm,活性组分为W-Ni,助剂SiO_2,TiO_2,P_2O_5等促进了活性组分的高度分散并提高了催化剂的加氢性能。在200 mL加氢装置上考察了工艺条件对催化剂加氢活性的影响。实验结果表明,该催化剂在进行选择加氢脱硫和多环芳烃饱和反应时,较佳的工艺条件为:液态空速1.0 h~(-1),氢油体积比500∶1、氢分压8.0 MPa、反应温度不低于350℃。经2 000 h活性稳定性实验后,生成油的硫含量始终小于10μg/g,多环芳烃含量始终小于11%(φ),加氢脱硫、多环芳烃饱和性能稳定。  相似文献   

9.
通过对传统Al_2O_3载体加以改进,研制出一种凝析油加氢处理催化剂CoMoNi/Al_2O_3-ZrO_2。该催化剂具有较高的脱硫活性和芳烃饱和活性,在压力为4.0 MPa、反应温度为320℃、氢油体积比为350∶1、空速为1.0 h~(-1)的条件下,脱硫率达到99.6%,芳烃饱和率达到95.4%。1 000 h稳定性试验结果表明,催化剂具有良好的活性稳定性。  相似文献   

10.
以拟薄水铝石粉为载体制备原料,以Ni为活性金属组分,用等体积浸渍工艺制备了C4叠合产物加氢催化剂,并对催化剂进行表征和性能评价。结果表明,C4叠合产物加氢催化剂比表面积≥180 m2/g,孔体积≥0.5 cm3/g,侧压强度≥180 N/cm。在反应条件温度80~200℃、压力1~4 MPa、氢油比100∶1~500∶1以及空速1~2 h-1条件下,烯烃加氢饱和转化率可达99%以上。  相似文献   

11.
采用中国石油石油化工研究院开发的Pt-Pd/Al_2O_3加氢精制催化剂对聚α-烯烃PAO40粗产品进行了加氢精制。结果表明:在反应温度240~280℃、反应压力4.0~8.0 MPa、体积空速0.1~0.4h-1、氢油体积比300∶1的工艺条件下,PAO40加氢产品的芳烃含量达到国外同类优秀产品水平;PAO40加氢产品经光照30天后不变色,具有较好的光安定性。  相似文献   

12.
以不同酸性的HY沸石为载体,金属Pt为加氢活性组分,采用浸渍法制备了一系列的双功能Pt/HY催化剂;采用吡啶红外、TEM、H2-TPR、XPS等手段对其进行表征;并以萘为原料,采用固定床加氢装置考察Pt/HY系列催化剂在萘加氢转化反应中的催化性能。结果表明:金属Pt分散在HY载体的外表面和孔道中,且具有相似的电子状态,金属同载体之间的相互作用相近;在反应温度250 ℃、反应压力2 MPa、质量空速1.0 h-1的条件下,Pt负载质量分数1%的3种Pt/HY催化剂均表现出较强的催化加氢性能;酸性对制备的Pt/HY催化剂催化萘加氢反应性能没有显著影响,主要影响十氢萘的异构性能;此外,HY载体的酸性对Pt/HY催化剂的异构开环性能和稳定性也具有一定的影响;具有较多酸量的Pt/HY催化剂表现出更好的异构开环性能,且酸量越多,催化剂稳定性越差。  相似文献   

13.
以大孔γ-Al2O3为载体,Mo-Ni为活性组元,采用等体积浸渍法制备了催化裂化重汽油临氢脱砷剂。考察了拟薄水铝石、胶溶剂、金属活性组元类型、金属原子比对临氢脱砷剂催化性能的影响,以及脱砷剂活性和长周期稳定性。结果表明:氧化铝孔径分布对脱砷剂性能影响较大,大孔径有利于提高临氢脱砷剂脱砷活性,有机酸作为胶溶剂可显著提高载体大孔比例;适宜的Ni/(Ni+Mo)原子比有利于改善金属分散性,提高催化剂的脱砷活性和脱砷选择性;临氢脱砷剂表现出较好的长周期运行稳定性,综合性能与商品临氢脱砷剂相当。  相似文献   

14.
预硫化加氢催化剂的气相钝化   总被引:1,自引:0,他引:1  
 采用膨胀床气相硫化-钝化技术,分别对柴油加氢催化剂FH-98和裂解汽油二段加氢催化剂DZN-1进行硫化、钝化处理。对各状态催化剂进行了XRD、DTA、吡啶-TPD、TPR、SEM和物性表征,并对硫化态和钝化态的DZN-1催化剂和FH-98催化剂进行了加氢活性评价。结果表明,硫化态的FH-98催化剂经过钝化处理后,有金属氧化物生成,氧化产物层的厚度取决于钝化反应的温度和钝化气中O2的浓度。硫化态的DZN-1催化剂经过钝化处理后,总酸量增加,酸强度增强;钝化增强了活性组分和载体间的相互作用,改善了催化剂的低温热稳定性。经硫化态和钝化态FH-98催化剂加氢脱硫处理,柴油中芳烃的体积分数由55.0%降为39.5%和41.7%,硫质量分数由1070μg/g 降为13.4和52.7μg/g;经硫化态和钝化态DZN-1催化剂加氢处理后,汽油的溴价由24.98 gBr2/100g分别降为0.064和0.060gBr2/100g。硫化催化剂经钝化后,改善了催化剂的低温稳定性,同时保持了硫化催化剂的加氢活性,但降低了其加氢脱硫活性。  相似文献   

15.
在3×400 mL固定床加氢中试装置上评价了重油固定床加氢催化剂(包括重油加氢保护剂、重油加氢精制催化剂和芳烃饱和催化剂)用于中/低温煤焦油加氢改质的效果。中试条件为:原料体积空速0.8 h-1(按加氢精制催化剂计算),反应压力12.0 MPa和13.5 MPa,氢油比1 200∶1,保护剂床层平均反应温度270℃,精制催化剂床层平均反应温度350℃,芳烃饱和催化剂床层平均反应温度360℃,在2个操作压力下各运转120 h。结果表明:提高煤焦油加氢改质反应压力,有利于杂原子的脱除。煤焦油经过加氢改质后,残炭、杂原子、芳烃含量大大降低,各馏分产品性质明显改善。产物中石脑油馏分含量增加,芳烃潜含量高,可作为优质的催化重整原料;柴油馏分含量基本不变,硫、氮含量低,凝点低,可作为优质的柴油调合组分;蜡油馏分含量明显降低,残炭和金属含量少,可作为优质的催化裂化原料。上述结果表明将重油固定床加氢催化剂用于煤焦油加氢改质在技术上是可行的。  相似文献   

16.
采用过量溶液浸渍法,以硝酸镧为改性剂,对SAPO-11分子筛进行了稀土改性。结果表明:与未改性SAPO-11分子筛相比,改性后La/SAPO-11分子筛颗粒完整,具有较高的结晶度,介孔比表面积和介孔孔体积均增加,水热稳定性明显改善;在分子筛加入质量分数为6%的条件下,与ZSM-5分子筛相比,在La/SAPO-11(负载La质量分数为4%)分子筛制备的催化裂化(FCC)催化剂生产的产物中,汽油收率(质量分数,下同)与轻质油收率分别提高了0.34,0.24个百分点,汽油研究法辛烷值增加了0.5个单位;由该分子筛制备的FCC催化剂催化性能提高,异构化性能明显增强。  相似文献   

17.
以含钛氢氧化铝干胶和不含钛氢氧化铝干胶作为前驱物获得载体,采用浸渍法制备出Pt/Al_2O_3-TiO_2催化剂和Pt/Al_2O_3催化剂;采用BET、XRD、TPR、TEM、氢氧滴定等方法对所制备的催化剂进行表征,以重整抽余油为原料进行烯烃和芳烃的加氢活性评价。结果表明,TiO_2在载体中以锐钛矿形式存在,Pt/Al_2O_3-TiO_2催化剂的孔体积、比表面积和强度均略小于Pt/Al_2O_3催化剂,前者更易还原,Pt的分散度更大,而且有更高的烯烃和芳烃加氢活性。  相似文献   

18.
以超细SiO2为载体、水热稳定性好的高硅铝比ZRP-5分子筛为活性组分,通过挤条成型制成ZRP-5/SiO2催化剂,采用碱土金属氧化物对催化剂进行改性,考察催化剂的活性与表面酸性的关系。结果表明,B酸与催化剂的活性相关,经MgO,CaO,SrO改性后,催化剂的酸性和活性随Mg,Ca,Sr原子半径的增大而降低。采用MgO-CaO/ZRP-5/SiO2催化剂,在500 ℃、0.1 MPa、水与碳四原料质量比0.2、重时空速3 h-1的条件下连续反应50 d,反应产物组成稳定,碳四烯烃转化率大于65%,丙烯收率大于31%,乙烯收率大于6%,再生后催化剂可以恢复到新催化剂98%的水平。  相似文献   

19.
采用干混和等体积浸渍法分别制备了NiB/Hβ、NiP/Hβ和Ni-HPWMo/Hβ3种烷烃异构化催化剂,并采用XRD、SEM、NH3-TPD等手段对催化剂进行表征,考察了3种催化剂催化正己烷异构化的反应性能、热稳定性及650 ℃再生后催化异构化性能。结果表明:虽然3种催化剂均具有催化正己烷异构化的活性,但Ni-HPWMo/Hβ、NiB/Hβ的热稳定性较差,而且NiB/Hβ的催化裂解性能较强,导致裂解产物增多;在650 ℃下模拟工业条件再生后,Ni-HPWMo/Hβ和NiB/Hβ催化性能明显降低,NiP/Hβ依旧能保持稳定的催化异构化活性。通过对比3种镍基烷烃异构化催化剂的热稳定性及模拟再生性能,表明NiP/Hβ催化剂具有一定的工业应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号