首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
刘存芳  史娟  张强 《食品与机械》2016,32(8):147-150
以橘皮为原料,脱除脂溶性物质后采用超声波辅助法提取其中的水溶性多糖,以提取温度、提取时间、提取功率、料液比为自变量,多糖提取率为响应值,设计正交试验进行优化,确定最佳提取工艺条件。并利用Fenton反应测试橘皮多糖的抗氧化活性。结果表明:在提取温度70℃、提取时间50min、超声波功率280 W、料液比1:25(g/mL)的条件下橘皮多糖的提取率可高达28.86%,提取效果显著。体外抗氧化试验表明,橘皮多糖对羟基自由基具有清除作用且存在量效关系。  相似文献   

2.
滑菇多糖的超声波辅助提取工艺及抗氧化活性研究   总被引:2,自引:0,他引:2  
目的:确定滑菇多糖(Pholiota nameko polysaccharides,PNP)在超声波辅助条件下提取的最佳工艺及体外抗氧化活性。方法:研究浸提温度、超声功率、超声时间、料液比4 个因素对多糖提取率的影响,并通过正交试验确定超声波辅助提取滑菇多糖的最佳工艺;体外抗氧化活性采用在体外化学模拟条件下,测得滑菇多糖的总还原力,以及对超氧阴离子自由基(O2·)、羟自由基(·OH)的清除作用。结果:超声波辅助提取滑菇多糖的最佳工艺参数为浸提温度75℃、超声时间16min、超声功率700W、料液比1:30(g/mL);此条件下的滑菇多糖粗品得率达9.17%;滑菇多糖具有较强的还原力和较强的自由基清除作用。结论:滑菇多糖可作为潜在天然抗氧化剂应用于食品和医药工业中。  相似文献   

3.
利用超声波细胞粉碎技术辅助提取蒲公英叶多糖,并采用响应面法对其提取工艺进行优化。研究超声功率、料液比、提取时间、温度对蒲公英叶多糖提取率的影响,在单因素试验的基础上进行响应面试验并对蒲公英叶多糖的抗氧化能力进行测定。结果表明,蒲公英叶多糖的最佳提取工艺为超声功率197 W、料液比1∶15(g/mL)、提取时间25 min,此工艺下多糖提取率为5.346%。蒲公英叶多糖具有一定的抗氧化活性,其对DPPH 自由基、羟自由基、超氧阴离子自由基的IC50 值分别为34.62、12.16、0.98 mg/mL。  相似文献   

4.
以黑木耳为原料,研究超声波辅助提取黑木耳中多糖的工艺条件和体外抗氧化活性。以多糖提取率为评价指标,通过单因素试验和正交试验探讨料液比、超声时间、超声温度、超声功率对黑木耳多糖提取率的影响,并探索其抗氧化活性。结果表明:超声波辅助优化黑木耳多糖的最佳提取工艺条件为料液比1∶40(g/m L)、超声时间20 min、超声温度50℃、超声功率100 W,在此条件下,黑木耳多糖平均提取率为9.69%。  相似文献   

5.
采用均匀设计法优化灰树花多糖超声波辅助提取工艺参数,为其多糖资源开发利用提供参考。以灰树花多糖提取率和β-葡聚糖提取率为评价指标,以超声功率、提取时间、提取温度和水料比为因素,通过均匀设计法优化提取工艺,同时对灰树花多糖抗氧化活性进行初步研究。结果表明:灰树花多糖超声波辅助提取最佳条件为,超声功率500 W、提取时间64 min、提取温度43℃、水料比31∶1(mL/g),浸提2次,在此条件下,灰树花多糖的提取率为23.055%;β-葡聚糖的最佳提取条件为,超声功率450 W、提取时间74 min、提取温度68℃、水料比28∶1(mL/g),浸提2次,在此条件下,β-葡聚糖的提取率为3.030 mg/g;抗氧化活性研究结果显示,灰树花多糖的还原力OD700nm值为0.561±0.005,其DPPH自由基和羟自由基的清除率均随质量浓度的增大而增大,DPPH自由基和羟自由基的清除率为分别为58.27%和89.58%,羟自由基的清除率高于VC。  相似文献   

6.
采用超声波辅助法探索淮山药中山药多糖的最佳提取条件,并进一步考察山药多糖的体外抗氧化活性。结果表明,山药多糖的最佳提取工艺为:超声时间40 min,超声功率800 W,料液比1∶10(g/mL),60℃水浴浸提时间30 min,提取2次。在此条件下,山药多糖的提取率可达15.23%。对该条件下提取的山药多糖进行DPPH自由基、羟基自由基和超氧阴离子自由基清除率测定,结果表明,山药多糖的抗氧化性显著高于VC。  相似文献   

7.
徐怀德  秦盛华 《食品科学》2010,31(10):106-111
通过单因素以及正交试验研究超声波辅助提取光皮木瓜多糖的最佳工艺及其体外抗氧化性。结果表明:超声波辅助提取光皮木瓜多糖的最佳提取条件为料液比1:45(g/mL)、提取温度80℃、提取时间40min,超声波功率600W,在此条件下多糖的提取率为12.072%。光皮木瓜多糖对NO2、DPPH·以及·OH 清除作用明显,具有较好的还原力,表明光皮木瓜多糖有较好的抗氧化活性。  相似文献   

8.
以多糖提取率为指标,通过对比热水浸提法与超声波辅助提取法,确定提取槟榔芋多糖的最佳工艺条件。结果表明,热水浸提法提取槟榔芋多糖的最佳条件为:提取时间为3 h,料液比为1:35,提取温度为70℃,多糖提取率为4.89%;超声波辅助提取法提取槟榔芋多糖的最佳方案为:超声温度50℃,超声功率90%,料液比1:40,提取时间45 min,多糖提取率为6.10%。超声波辅助提取法优化了多糖的提取工艺,不仅极大地缩短了提取时间,降低了能耗,也极大提高了槟榔芋多糖提取率。抗氧化活性测定结果显示,清除羟基自由基和DPPH自由基的IC_(50)分别为1.186 mg/m L和0.910 mg/m L;当槟榔芋多糖质量浓度为1.6mg/mL时,其吸光度值为0.545。说明槟榔芋多糖具有较好的抗氧化活性。  相似文献   

9.
目的:通过微波-超声波联合辅助提取法优化笋壳多糖提取工艺,并研究其抗氧化活性。方法:考察提取时间、料液比、微波功率、超声波功率、提取次数对笋壳多糖含量的影响,在单因素试验基础上做L9(34)正交试验优化提取工艺参数,通过测定笋壳多糖清除羟自由基、超氧阴离子自由基、1,1-二苯基-2-苦基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基的能力来评价其抗氧化活性,并同传统热水浸提法进行比较。结果:微波-超声波联合辅助提取最优工艺条件为提取时间30 min、料液比1∶30(g/mL)、微波功率200 W、超声波功率750 W,笋壳多糖得率为2.76%,粗多糖中多糖含量为37.63%;清除羟自由基、DPPH自由基和超氧阴离子自由基的半抑制浓度分别为0.17、0.43 mg/mL和大于16 mg/mL。微波-超声波联合辅助提取法的各项指标均优于热水浸提法。结论:微波-超声波联合辅助提取笋壳多糖比传统热水浸提具有耗时短、效率高等优点,笋壳水溶性多糖具有显著体外抗氧化活性。  相似文献   

10.
响应面法优化绿萝花多糖提取及抗氧化活性   总被引:1,自引:0,他引:1  
研究绿萝花多糖的超声波辅助提取工艺优化方法,并测定其体外抗氧化活性。在单因素试验基础上,选定温度、时间、液料比和超声波功率为影响因素,采用Box-Behnken中心组合设计,通过4因素3水平的试验和响应面回归分析得出优化的提取工艺。对酶-Sevage法结合脱蛋白后的多糖进行清除·OH和DPPH·2种自由基的实验以评价其抗氧化活性。结果表明,最优提取条件为:提取温度74℃、提取时间1.5 h、液料比32:1、超声波功率455 W,绿萝花多糖提取率为3.51%。多糖浓度为4.0 mg/mL时,对·OH和DPPH·的清除率分别达到76.03%和76.94%。超声波辅助提取绿萝花多糖工艺合理可行、成本较低,绿萝花多糖有良好抗氧化活性。  相似文献   

11.
响应面法优化桦褐孔菌多糖提取工艺及其抗氧化活性   总被引:1,自引:0,他引:1  
利用超声波辅助技术研究桦褐孔菌多糖的最佳提取工艺,并对其抗氧化活性进行评价。在单因素试验基础上,以多糖提取率为指标,采用Box-Behnken响应面法优化超声辅助提取条件;采用三氯乙酸(trichloroacetic acid,TCA)法纯化多糖后,通过DPPH自由基清除试验来评价其抗氧化活性。结果表明,桦褐孔菌多糖的最佳提取条件为:超声时间31 min,超声温度52℃,液料比为21∶1(mL/g),多糖提取率达到(3.81±0.19)%。桦褐孔菌粗多糖中多糖质量分数为19.0%(以葡萄糖计),蛋白质量分数为13.9%(以牛血清蛋白计)。体外抗氧化试验显示,桦褐孔菌精制多糖对DPPH自由基有一定的清除作用。  相似文献   

12.
以桑黄多糖提取率为指标,以低共熔溶剂(deep eutectic solvents,DES)摩尔比、DES含水量、液固比、超声功率、超声时间、提取温度为考察因素,进行单因素和Box-Behnken响应面试验,优化超声波辅助DES提取桑黄多糖工艺;通过测定纯化后的桑黄多糖对DPPH自由基、羟基自由基的清除率以及对肿瘤细胞的抑制率考察其体外活性。结果表明,桑黄多糖的最佳提取工艺为氯化胆碱与丙三醇摩尔比1∶2、DES含水量30%、超声时间30 min、液固比为39∶1(mL/g)、提取温度58℃、超声功率90 W,在该条件下桑黄多糖提取率为(13.11±0.16)%,与预测值相对误差为0.91%;体外活性结果显示纯化后的桑黄多糖具有良好的抗氧化活性和抑制肿瘤细胞增殖的能力,且与药物浓度呈量效关系。因此超声波辅助DES提取桑黄多糖不仅提取率较高且提取物具有较强的抗氧化及抗肿瘤活性。  相似文献   

13.
以野胡萝卜为试材,采用超声波辅助方法提取其多糖,在单因素试验的基础上,利用正交试验优化超声波辅助提取野胡萝卜多糖工艺,同时探究其体外抗氧化活性。结果表明,最佳提取工艺工艺参数为:超声功率550 W、料液比1:40(g/mL)、超声时间30 min、超声温度40℃,在此条件下,野胡萝卜多糖的平均提取率为6.86%。超声波辅助提取的野胡萝卜多糖具有较强的抗氧化活性,对羟基自由基(·OH)、1,1-二苯基-2-三硝基苯肼自由基(DPPH·)和超氧阴离子自由基(O_2~-·)的清除作用明显,且其质量浓度与抗氧性活性呈现一定的量效关系,是一种良好的天然抗氧化剂。  相似文献   

14.
通过单因素试验分别考察粉碎粒度、料液体积质量比、提取温度、提取时间、微波功率和超声波功率对猴头菇多糖提取得率的影响,确定各因素的适宜水平。在单因素试验基础上,应用Box-Behnken试验设计和响应面分析法,探讨料液体积质量比、提取温度、提取时间和超声波功率对提取猴头菇多糖得率的影响。响应面优化结果表明,微波超声波组合提取猴头菇多糖的最优工艺为:粉碎粒度20目、液料体积质量比20 mL/g、提取温度74℃、提取时间16 min、微波功率200 W、超声波功率1 052 W。在最优工艺条件下,多糖得率为6.44%,非常接近预测值,说明所以优化的提取工艺参数可靠。体外抗氧化活性结果表明,微波超声波组合提取的猴头菇多糖抗氧化活性较高,对羟基自由基、DPPH自由基和超氧阴离子自由基清除作用显著,可以作为一种良好的天然抗氧化剂。  相似文献   

15.
以杏鲍菇为原料,采用水提和复合酶法提取杏鲍菇多糖,用苯酚-硫酸法测定多糖含量,探讨提取工艺条件,用Sevag法脱蛋白对杏鲍菇多糖进行纯化,并对其抗氧化活性进行研究。试验结果表明,水提最佳条件为料液比1∶20(g/m L)、时间50 min、温度30℃,多糖提取率为13.64%;酶法提取最佳工艺条件为酸性纤维素酶2.0%、酸性蛋白酶1.5%、料液比1∶20(g/m L)、温度30℃、时间50 min,多糖提取率为15.86%;复合酶法比水提法提取率提高了16.28%。采用Sevag法对杏鲍菇粗多糖进行纯化,多糖纯度提高了40.37%。杏鲍菇粗多糖,精多糖对OH·、O2-·和DPPH均有较强的清除能力,且随其浓度的增加清除率逐渐增大;相同质量浓度粗多糖的清除效果大于精多糖,但都明显低于VC。  相似文献   

16.
目的探索柠檬皮中多糖的超声波提取工艺条件和体外抗氧化活性。方法以海南万宁柠檬皮为原料,通过单因素试验和四因素三水平正交试验研究料液比、超声时间、超声温度、超声功率对柠檬皮多糖提取率的影响,并采用铁离子还原法研究其体外抗氧化活性。结果最佳提取工艺条件是:料液比1:40(g/ml)、超声时间40 min、超声温度50℃、超声功率300 W,柠檬皮多糖平均提取率为10.29%。其体外抗氧化活性随多糖质量浓度的增大呈线性增强。结论该工艺稳定、可行,适合海南柠檬皮多糖的提取,且柠檬皮多糖有较强抗氧化活性。  相似文献   

17.
以沙枣种子为原料,利用超声波辅助提取沙枣种子油,并对其体外抗氧化活性进行研究。在单因素试验的基础上,采用正交试验进行优化,确定超声波辅助提取沙枣种子油的最佳提取条件。结果表明,各因素的主次顺序为浸提温度>浸提时间>超声波功率>料液比,超声波辅助提取最佳工艺条件为浸提时间30 min、浸提温度30℃、超声波功率120 W、料液比1∶6(g/mL),提取率为26.07%。超声波辅助提取的沙枣种子油具有较强的抗氧化活性。10 mg/mL的沙枣种子油对羟自由基(.OH)清除率为87.05%;8 mg/mL的沙枣种子油对DPPH自由基的抑制率为52.36%;8 mg/mL的沙枣种子油对超氧负离子(O2-.)的清除率为59.55%。  相似文献   

18.
以香荔核为原料,参照单因素试验结果,以多糖提取率为响应值,采用响应面法优化香荔核多糖的超声波辅助提取工艺,并通过测定香荔核多糖对羟基自由基、超氧阴离子自由基的清除能力及总还原力对其抗氧化活性进行评价。试验表明,超声波辅助热水浸提法提取香荔核多糖的最佳工艺:提取温度58℃,液料比为24∶1(mL/g),超声功率为620 W,超声时间20 min,此条件下,多糖的实测平均提取率为10.04%,与回归模型预测值10.72%相当。当多糖浓度为0.5 mg/mL时,对羟基自由基、超氧阴离子自由基的清除率达到74.44%、86.52%,总还原力为0.596,说明香荔核多糖具有较强的抗氧化能力,且其抗氧化活性与多糖浓度成正向线性关系。  相似文献   

19.
《粮食与油脂》2017,(5):66-70
运用2种提取工艺,探究超声波及微波功率、处理时间、乙醇浓度对玉米须活性物质提取率的影响,评估抗氧化性。结果表明:超声波辅助提取最佳工艺为超声波功率260 W、提取温度63℃、提取时间17 min,总黄酮实际提取率为0.563%;微波辅助提取最佳工艺为提取时间8 min、料液比1∶50(g/mL)、乙醇浓度60%,黄酮实际提取率为0.787%;超声波辅助工艺提取液的羟自由基清除率为84.79%,FRAP值为713.91;微波辅助工艺提取液的羟自由基清除率为85.89%,FRAP值为700.87。2种提取工艺得到的黄酮都具有良好的抗氧化性,为玉米须深度开发利用提供一定的依据。  相似文献   

20.
研究复合酶提取芦荟多糖的工艺,并测定其抗氧化性。在单因素试验的基础上,利用响应面法对复合酶提取芦荟多糖的条件进行了优化,通过测定芦荟多糖的总抗氧化能力、DPPH自由基和羟自由基清除能力研究其抗氧化性。结果显示,当料液比1∶30(g/mL)、果胶酶与纤维素酶配比1∶3、pH 4.5时,优化最佳提取条件为加酶量0.3%、酶解温度48 ℃、酶解时间40 min,此条件下芦荟多糖的提取率为5.65%,和超声波辅助法相比提取率提高了4.2%。芦荟多糖具有较好的抗氧化性,随着质量浓度的增加,其总抗氧化能力、DPPH自由基和羟自由基清除能力逐渐增强,在25 mg/mL时其DPPH自由基和羟自由基清除率分别达到75%和90%。复合酶法是一种新的、有效的芦荟多糖提取方法;芦荟多糖具有较好的抗氧化性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号