首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
热处理对龙眼果实采后生理和贮藏品质的影响   总被引:4,自引:0,他引:4  
探讨了热处理对龙眼果实采后生理和品质的影响。用50℃热水处理龙眼果实10 min,晾干,用聚乙烯薄膜袋密封包装,置于(15±1)℃下贮藏。贮藏期间定期测定果实呼吸强度、失重率、果皮细胞膜相对渗透率、果皮丙二醛(MDA)、叶绿素、类胡萝卜素、花色素苷、类黄酮和总酚含量、果肉可溶性固形物(TSS)、可滴定酸(TA)、可溶性糖、还原糖和维生素C含量、果皮褐变指数和果肉自溶指数等指标。结果表明:与对照果实相比,50℃热水处理10 min,可有效降低采后龙眼果实呼吸强度,减少果实失重率,延缓果皮MDA含量和细胞膜相对渗透率的升高,保持较高的果皮叶绿素、类胡萝卜素、花色素苷、类黄酮和总酚含量和果肉TSS、TA、可溶性糖、还原糖和维生素C等营养成分含量,降低果皮褐变指数和果肉自溶指数。该处理可有效延缓采后龙眼果实衰老,提高龙眼果实贮藏品质。  相似文献   

2.
1-MCP处理对杨桃果实采后生理和贮藏品质的影响   总被引:1,自引:3,他引:1       下载免费PDF全文
该文探讨1-甲基环丙烯(1-MCP)处理对“香蜜”甜杨桃果实采后生理和贮藏品质的影响。采后‘香蜜’甜杨桃果实用0.6 μL/L的1-MCP处理12 h后,在(15±1) ℃、相对湿度90%下贮藏。贮藏期间测定果实呼吸强度、细胞膜相对渗透率、果皮叶绿素和类胡萝卜素含量、果实硬度、可溶性固形物和可滴定酸含量、果实好果率、失重率及感官品质等指标的变化。结果表明:与对照果实相比,1-MCP处理能有效降低杨桃果实的呼吸强度和呼吸峰值,抑制果实外观颜色转变,保持较高的果实硬度和可滴定酸含量,延缓果实细胞膜相对渗透率升高,减少果实失重和腐烂。经1-MCP处理的果实在(15±1) ℃、相对湿度90%下贮藏20 d时的好果率为78%,而对照果实只有63%。因此认为,0.6 μL/L 1-MCP处理可延缓采后‘香蜜’甜杨桃果实成熟衰老和保持果实贮藏品质。  相似文献   

3.
1-甲基环丙烯对黄金梨低温贮藏效果的影响   总被引:3,自引:1,他引:2  
研究室温条件下,用浓度1.0μL/L 1-MCP处理的黄金梨在低温(0±0.5)℃贮藏过程中呼吸强度、硬度、可溶性固形物、可滴定酸、MDA含量、细胞膜相对透性和PPO活性的变化.试验结果表明:1-MCP处理能明显抑制黄金梨呼吸作用、可溶性固形物、细胞膜相对透性和PPO活性的增加,延缓果实硬度、可滴定酸含量的下降,从而较好地保持果实在贮藏期间的品质和风味.同时降低MDA的含量,延缓果实的成熟和衰老,从而提高黄金梨的贮藏质量.  相似文献   

4.
研究了建阳桔柚果实采后贮藏期间生理和营养成分的变化规律。试验结果表明,随着贮藏时间的延长,桔柚果实的呼吸强度、失重率、汁胞枯水指数、果皮细胞膜渗透性、乙醇含量呈上升趋势,建阳桔柚果肉可溶性固形物含量、总糖含量、类胡萝卜素含量呈现先上升后逐渐下降的趋势,而可滴定酸含量、Vc含量是呈逐渐下降趋势。  相似文献   

5.
研究了聚偏氯乙烯袋简单包装和真空包装对石硖龙眼果实常温(25℃)贮藏品质的影响。结果表明,采用真空包装方式能有效地抑制龙眼贮藏期间果皮PPO活性,延缓果皮相对膜透性的增加,同时保持了较高的总酚含量,使果皮褐变指数和腐烂指数处于较低水平,并使贮藏期从3.50d延长至7.12d。另外,真空包装还保持了龙眼果肉中较高的可溶性固形物、可滴定酸和VC含量。  相似文献   

6.
低温贮藏对"长营"橄榄果实采后生理和品质的影响   总被引:1,自引:0,他引:1  
研究了"长营"橄榄果实在(15±1)℃和(8±1)℃下贮藏的果实呼吸强度、细胞膜透性和品质的变化.结果表明:在(15±1)℃下贮藏的橄榄果实呼吸强度高,呼吸高峰较旱出现,果实细胞膜透性、失重率和果皮褐变指数增加,果实好果率低.而(8±1)℃低温贮藏可降低橄榄果实呼吸强度,延缓呼吸高峰出现,抑制果实细胞膜透性和果皮褐变指...  相似文献   

7.
NO对采后龙眼常温贮藏效果的影响   总被引:2,自引:0,他引:2  
以“石峡”龙眼(Dimocarpus longan Lour.cv.Shixia)为材料,研究了外源一氧化氮(NO)供体剂硝普纳(SNP)处理对龙眼保鲜效果的影响。结果表明:0.5mmol/L和1mmol/LSNP处理显著减缓了龙眼果皮褐变,降低了果实腐烂和果肉自溶,抑制了果皮POD活性。另外,SNP处理能保持果实较高的可溶性固形物和VC水平,而对可滴定酸含量影响不大。  相似文献   

8.
本项目研究龙眼核精油体外抗氧化性及常温保鲜效果,以有机溶剂正己烷提取龙眼核精油,测定精油对1,1-二苯基-2-苦肼基自由基(DPPH·)、羟基自由基(·OH)及亚硝酸钠(NaNO_2)的清除能力,以龙眼果肉颜色、果皮褐变指数、失重率、可溶性固形物、可滴定酸含量等生理指标变化作为保鲜效果的评判标准。结果表明:龙眼核精油对DPPH·、·OH及NaNO_2均有一定清除作用,IC_(50)分别为11.04、4.58、0.12 mg/mL,在试验浓度范围内呈一定量效关系;精油可降低龙眼果皮褐变指数及失重率上升速度;可溶性固形物含量变化起伏小;贮藏前期,可滴定酸含量变化缓慢,后期上升较快;精油处理组与空白对照组间差异不显著(p0.05),龙眼核精油对龙眼果实不具备明显保鲜效果;精油浓度过大会对龙眼果实产生不同程度的药害。  相似文献   

9.
针对‘檀香’橄榄果实冷藏期间易发生冷害现象,本实验研究了7 个采收期(Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ)对(2±1)℃、相对湿度85%~90%条件下冷藏橄榄果实冷害的影响。定期测定贮藏期间橄榄果实冷害指数、果皮褐变指数、果实好果率和质量损失率、果实呼吸强度和细胞膜相对渗透率、果实表面色度角、果皮叶绿素含量、果肉可溶性固形物、可滴定酸、可溶性总糖和还原糖含量的变化。结果表明:与采收期Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅵ、Ⅶ相比,采收期Ⅴ能保持冷藏橄榄果实较低的冷害指数、果皮褐变指数、果实质量损失率和较高的好果率,降低果实呼吸强度和呼吸峰值,延缓果实细胞膜相对渗透率升高,保持中后期较高的果实表面色度角、果皮叶绿素含量、果肉可溶性固形物、可滴定酸、可溶性总糖和还原糖含量。因此认为,采收期Ⅴ可作为减轻冷藏‘檀香’橄榄果实冷害发生的适宜采收成熟度。  相似文献   

10.
《食品与发酵工业》2017,(2):239-244
研究桧木醇处理对采后龙眼果实贮藏过程中品质和生理的影响。将采后龙眼果实浸泡在50μg/m L桧木醇溶液中10 min,晾干后于(25±1)℃下贮藏。贮藏期间定期测定褐变指数、病害指数、果肉自溶指数、VC含量、可溶性固形物(TSS)含量、可定量酸(TA)含量、总酚含量、苯丙氨酸解氨酶(PAL)和多酚氧化酶(PPO)的活性。结果表明:与对照组相比,采后贮藏第4天,处理组和对照组的的褐变指数分别为2.8和4.2;贮藏2 d后,对照组果实病害指数增加较快,而处理组较慢,在第6天,处理组和对照组的病害指数分别为11.46%与37.83%,因此,桧木醇处理明显抑制采后龙眼果实褐变和腐烂。此外,桧木醇处理激活龙眼果实在贮藏期间PAL活性,抑制PPO活性,并保持一定的总酚含量但桧木醇处理并不能显著抑制龙眼果实自溶。同时,能保持较高的可溶性固形物含量和可滴定酸含量,因此,桧木醇处理可以维持采后龙眼果实的品质,延缓果皮褐变。  相似文献   

11.
The effects of postharvest treatment with hexanal vapour on longan fruit decay, quality, hexanal residue, phenolic compound content, and polyphenoloxidase (PPO) and peroxidase (POD) activities were studied during storage at 5 °C for 30 days. Hexanal exposure for 2 h at 900 μL L?1 before cold storage reduced the percentage of fruit with decay and was deemed the optimum treatment. Hexanal exposure resulted in a pericarp that was more reddish brown and less intense in colour. Hexanal residue in the pericarp and aril of fumigated fruit was several fold higher than that of nonfumigated fruit, although levels were low at the end of cold storage. Electrolyte leakage of pericarp increased during 5 °C storage and was further increased by hexanal exposure. Hexanal reduced pericarp phenolic content, and increased PPO and POD activities. Overall, use of hexanal vapour reduced postharvest disease of longan fruit but increased the likelihood of pericarp browning.  相似文献   

12.
龙眼是中国南方重要的亚热带特色水果,其果实成熟于高温季节,采后极易发生果皮褐变、果肉自溶及病原菌侵染所致果实腐烂等品质劣变,是限制龙眼果实采后保鲜期的主要因素。本文就龙眼果实采后品质劣变(果皮褐变、果肉自溶、病原菌侵染导致果实变质腐烂),热处理、紫外线-强效应波长(UV-B)辐照处理、二氧化氯处理、壳聚糖处理、低温贮藏、气调冷藏、微生物生物保鲜等龙眼果实采后处理及保鲜技术的国内外研究进展进行综述,旨在为延缓采后龙眼果实品质劣变、延长龙眼果实保鲜期提供技术参考。  相似文献   

13.
本实验以10、50、100μmol/L MeJA处理‘储良’龙眼(Dimocarpus longan Lour.)果实,研究其对(20±1)℃、85%相对湿度贮藏条件下的龙眼果皮褐变的影响。结果表明:与对照组相比,MeJA处理可有效降低‘储良’龙眼采后果皮褐变指数、果皮细胞膜透性和果肉自溶指数,而且MeJA浓度越高,抑制效果越明显。与对照组相比,100μmol/L MeJA处理龙眼果实能够保持较高的果皮总酚和类黄酮含量,降低果皮多酚氧化酶活力,有效提高果皮过氧化物酶和苯丙氨酸解氨酶活力;另一方面,MeJA处理可以有效降低超氧阴离子自由基产生速率以及H2O2含量,有效增强抗氧化酶(超氧化物歧化酶、过氧化氢酶)活力以及1,1-二苯基-2-三硝基苯肼自由基清除能力,提高果皮抗氧化能力。综上,100μmol/L MeJA处理可抑制龙眼果实采后部分酚类物质代谢,增强其抗氧化能力,从而延缓龙眼采后果皮褐变的发生,延长贮藏保鲜期。  相似文献   

14.
过氧化氢对采后龙眼果实贮藏品质的影响   总被引:1,自引:0,他引:1  
过量的活性氧是导致果蔬采后品质劣变的主要原因之一。以活性最为稳定的过氧化氢作为活性氧,研究活性氧对采后龙眼果实贮藏品质的影响。结果显示:与对照龙眼果实相比,过氧化氢处理的龙眼果实采后贮藏期间具较低的果皮叶绿素、类胡萝卜素和类黄酮等色素含量,较低的果肉可溶性糖、蔗糖和VC等营养物质含量,较高的龙眼果皮褐变指数和果肉自溶指数,及较低的龙眼果实商品率。据此认为,活性氧在采后龙眼果实品质劣变中起重要的促进作用,活性氧会促进采后龙眼果实外观品质劣变和果肉营养物质的降解,从而降低采后龙眼果实商品价值。  相似文献   

15.
比较研究在温度(8±1)℃、相对湿度85%贮藏条件下‘东壁’和‘福眼’龙眼果实的果皮褐变差异及其与活性氧及酚类物质代谢的关系。结果表明:贮藏期间,‘东壁’龙眼果实的果皮褐变指数、果皮O2-·产生速率、丙二醛含量、细胞膜透性都显著低于‘福眼’龙眼,而活性氧清除酶(超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸氧化酶(APX))活性和内源抗氧化物质(还原型抗坏血酸(AsA)、还原型谷胱甘肽(GSH))含量都显著高于‘福眼’龙眼;‘东壁’龙眼果实的果皮多酚氧化酶(PPO)和过氧化物酶(POD)活性都低于‘福眼’龙眼,而果皮花色素苷、类黄酮和总酚含量则高于‘福眼’龙眼。因此,采后‘东壁’龙眼果实较不容易发生果皮褐变,与其具有较强的活性氧清除能力,能减少O2 - ·积累,减轻膜脂过氧化作用,较好地保持龙眼果皮细胞膜结构的完整性,延缓PPO、POD与酚类物质接触而减少酚类物质的酶促氧化褐变有关。  相似文献   

16.
壳聚糖对荔枝果皮渗漏性及贮藏时间的影响   总被引:3,自引:0,他引:3  
通过分析经壳聚糖涂膜处理的荔枝果实在贮藏期间果皮细胞的渗漏率的变化,研究果皮细胞电解质渗漏性与果实贮藏性能之间的关系。在研究的29、22、15和8℃4个温度范围内,随贮藏温度下降,果皮渗漏率降低,果实贮藏时间延长。在贮藏时间范围内,渗漏率表现为先是升高至峰值,然后下降。渗漏率开始发生下降后,果实失去商品价值。并且渗漏率峰值出现得越晚,果实贮藏时间越长。渗漏率(X)与褐变指数(Y)呈显著的正相关(R=0.9506),其回归方程为Y=0.0683X-1.0039。壳聚糖涂膜处理明显抑制荔枝果皮细胞的渗漏率,果实贮藏时间较长。  相似文献   

17.
Jingyu Shi  Jian Sun  John Shi  Mouming Zhao  Bao Yang 《LWT》2008,41(10):1742-1747
Postharvest browning of longan fruit results in a short life and a reduced commercial value. The experiments were conducted to separate, then purify and finally identify the polyphenol oxidase (PPO) substrates that cause longan fruit to brown. PPO and its substrates were, respectively, extracted from longan fruit pericarp tissues. The substrate for longan PPO was separated and purified using polyamide column chromatography, Sephadex LH-20 column chromatography and silica gel column chromatography, respectively. The substrate was further identified by 0.5% FeCl3 solution and enzymatic reaction with longan PPO. On the bases of UV, 1H NMR, 13C NMR, and ESI-MS data, the direct substrate for the PPO from pericarp tissues of longan fruit was identified to be (−)-epicatechin. Furthermore, the contents of (−)-epicatechin of pericarp tissues of longan fruit of two major cultivars were determined by high performance liquid chromatography (HPLC). The HPLC analysis exhibited that the contents of (−)-epicatechin of fruit pericarp of ‘Shixia’ and ‘Chuliang’ were 0.26 and 0.56 mg/g on fresh weight (FW) basis at harvest and 0.15 and 0.09 mg/g FW after 3 days of storage. The more rapid decrease in the (−)-epicatechin content of ‘Chuliang’ was due to the oxidization catalyzed by PPO, which was in agreement with the higher browning index.  相似文献   

18.
BACKGROUND: The aim of the present study was to investigate the expression profiles of three endo‐1,4‐β‐glucanase (EGase, EC 3.2.1.4) genes during aril breakdown of longan fruit stored at room temperature (25 °C), low temperature (10 °C) or on transferring fruit stored at 10 °C for 20 days to 25 °C. RESULTS: Three longan full‐length cDNAs, designated Dl‐EGase1, Dl‐EGase2 and Dl‐EGase3, were isolated and characterized. EGase activity in aril tissues of longan fruit increased with the appearance of aril breakdown symptoms, while RNA gel blot analysis revealed that the accumulations of three Dl‐EGase genes exhibited differential characteristics with the occurrence of aril breakdown. Dl‐EGase2 may be involved in the aril breakdown in longan fruit at the later stage of storage at room temperature. Conversely, expression of Dl‐EGase3 could be mainly involved in aril breakdown of fruit stored at 10 °C. In addition, Dl‐EGase3 and Dl‐Egase2 were related to the aril breakdown of fruit transferred from low temperature to room temperature. CONCLUSION: The results obtained in this study indicate that Dl‐EGase genes are involved in the aril breakdown of longan fruit and that considerable variation exists between expression patterns of individual members of the EGase gene family. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
Pericarp browning is the main limitation to the postharvest storage, handling and marketing life of litchi fruit. Pre‐storage treatment with pure N2 gas is potentially effective in reducing skin browning and maintaining eating quality of litchis. To better understand inhibition of pericarp browning by a short period of anoxia, adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) levels, adenylate energy charge and membrane permeability were investigated. Litchi fruit were exposed to pure N2 gas for 6 h and then kept in closed but vented containers for 6 days in the dark at 25 °C and 95–100% relative humidity. Changes in the mentioned fruit physiology and biochemistry parameters and in browning index were measured. ATP concentration and adenylate energy charge decreased rapidly and membrane permeability (relative leakage) increased gradually during storage. Fruit exposed to N2 gas exhibited higher concentrations of ATP, ADP and AMP and adenylate energy charge levels, and lower levels of browning index and membrane permeability, compared to control (non‐N2‐treated) fruit. Greater differences in ATP and ADP concentrations and adenylate energy charge levels of pericarp tissues between N2‐treated and control fruit were more manifest after 4 and 6 days of storage, in association with significant differences at the 5% level in the pericarp browning index. It is suggested that pre‐storage anoxia treatment maintains membrane integrity of pericarp tissues, with high ATP and ADP concentrations and high adenylate energy charge levels. Thus, the loss of cellular compartmentalization (mixing of enzymes and substrates) that leads to enzymatic browning of litchi fruit pericarp is delayed. Copyright © 2007 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号