首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
研究采用十二烷基磺酸钠(SDS)/异辛烷—正辛醇反胶束体系反萃取花生蛋白,并采用超声波辅助萃取,主要研究了缓冲溶液pH值、萃取时间、萃取温度、超声功率、KCl浓度对花生蛋白后萃率的影响.试验结果表明最佳后萃工艺条件为:缓冲溶液pH值为9、萃取时间为40 min、萃取温度为45℃、超声功率270 W、KCl浓度为1.5 mol/l,此时蛋白后萃率为82.62%.  相似文献   

2.
复合反胶束萃取花生蛋白的工艺优化   总被引:1,自引:0,他引:1  
采用AOT(丁二酸二异辛酯磺酸钠)、SDS(十二烷基硫酸钠)/异辛烷—正辛醇复合反胶束体系,超声辅助萃取花生蛋白,研究超声时间、花生浓度、超声功率、pH、离子浓度、温度、W0(反胶束溶液增溶水与表面活性剂摩尔比)、AOT(g)∶SDS(g)、表面活性剂浓度对蛋白萃取率的影响.结果表明,最佳提取工艺为温度35℃、KCl浓度0 mol/L,pH值8,表面活性剂浓度0.08 g/mL,AOT(g)∶SDS(g)为4∶3,超声功率180 W,W0值15,该工艺条件下,花生蛋白的萃取率为93.33%.  相似文献   

3.
SDS-Tween 60混合反胶束体系萃取大豆蛋白工艺优化   总被引:1,自引:1,他引:0  
以全脂大豆粉为原料,采用SDS(十二烷基硫酸钠)–Tween 60(聚氧乙烯失水山梨醇硬脂酸酯)/异辛烷–正辛醇形成混合反胶束体系,辅以超声波萃取大豆蛋白;研究两种表面活性剂总浓度和质量比、缓冲溶液KCl浓度和pH、W0、萃取温度和时间、大豆粉加入量等因素对大豆蛋白前萃率影响,及缓冲溶液KCl浓度、pH和乙醇加入量对大豆蛋白后萃率影响。通过正交试验优化萃取工艺,得到最优前萃取条件为:表面活性剂总浓度0.10 g/mL,质量比为7∶3、KCl浓度0.10 mol/L,pH 7、W020、萃取温度35℃;在此条件下,大豆蛋白前萃率为89.46%±1.21%。最优后萃取条件为:缓冲溶液KCl浓度1.4 mol/L、pH 8.5、乙醇加入量15%,大豆蛋白后萃率为87.37%±1.64%;总萃取率为78.16%±1.98%。  相似文献   

4.
反胶束法提取小麦胚芽蛋白前萃工艺的优化   总被引:4,自引:0,他引:4  
采用由琥珀酸二(2-乙基已基)酯璜酸钠(AOT)-异辛烷-化钾缓冲溶液组成的反胶束体系从小麦胚芽中提取蛋白质,考查了AOT浓度、缓冲溶液pH值、KCl浓度、萃取时间、加入小麦胚芽粉量、W0、温度对小麦胚芽蛋白前萃提取率的影响,并在单因素基础上,通过响应面分析法确定前萃最佳工艺条件:A钾浓度为3.35/50 mL异辛烷,缓冲溶液pH 8.0,KCl浓度0.1 mol/L,萃取时间60 min,加入小麦胚芽粉量0.5 g,W0为.25,温度36℃,在此最佳工艺条件下,小麦胚芽蛋白前萃提取率达到34.55%.  相似文献   

5.
《粮食与油脂》2017,(11):59-63
以二辛基琥珀酸磺酸钠(AOT)-异辛烷-氯化钾缓冲溶液为前萃体系,对从前萃体系中提取的花生粕蛋白的后萃工艺条件进行研究。考查了KCl缓冲溶液的浓度、加入量以及pH对花生粕蛋白后萃率的影响,并在单因素试验基础上,通过响应面试验确定后萃最佳工艺条件为KCl缓冲溶液的浓度1.02 mol/L、加入量1.49 mL、pH 8.83。在此最佳工艺条件下,花生蛋白后萃率达到84.4%。  相似文献   

6.
采用由十六烷基三甲基溴化铵(CTAB)-正庚烷-正辛醇和氯化钾缓冲溶液组成的反胶束体系从大蒜粉中提取蒜氨酸,考察了CTAB浓度、萃取时间、KCl浓度、温度、缓冲溶液pH值、蒜粉加入量对蒜氨酸前萃提取率的影响,并在单因素基础上,通过正交实验确定前萃最佳工艺条件:CTAB浓度0.07mol/L,缓冲溶液pH 7.0,KCl浓度0.3mol/L,萃取时间30min,加入蒜粉含量0.5g/30mL,温度40℃,在此最佳工艺条件下,蒜氨酸前萃提取率达到1.62%。  相似文献   

7.
利用超声波辅助SDS(十二烷基磺酸钠)/异辛烷-正辛醇反胶束体系萃取米糠蛋白。主要考察了料液比、SDS质量浓度、W_O值、超声功率、前萃时间、增溶水p H和KCl浓度对米糠蛋白前萃率的影响。通过正交实验设计优化得到超声波辅助最佳萃取工艺条件为料液比0.015∶1、SDS质量浓度0.08 g/m L、W_O值30、超声功率225 W、前萃时间40 min、增溶水p H 7.5和KCl浓度0.25 mol/L。在最佳条件下,米糠蛋白前萃率为86.96%,比常规振荡萃取的高17.14个百分点。  相似文献   

8.
研究超声辅助AOT(二-(2-乙基己基)琥珀酸酯磺酸钠)/异辛烷反胶束体系萃取花生蛋白的后萃取过程,并分析各因素对蛋白后萃取率的影响,通过正交试验得到了最佳后萃取工艺条件为:缓冲溶液pH值为8.5、萃取时间为50 min、萃取温度为40℃、超声功率240W、KCl浓度为1.5 mol/L,在此条件下,蛋白后萃取率为82.17±1.52%。  相似文献   

9.
研究了超声波对十二烷基磺酸钠(SDS)/异辛烷(正辛醇)反胶束体系对大豆蛋白萃取的强化作用.分析了各种因素对蛋白前萃率的影响,并与未使用超声波辅助反胶束萃取大豆蛋白进行了比较.结果表明采用超声辅助反胶束萃取大豆蛋白,蛋白质可提高23%,且萃取时间大为缩短.使用正交实验得到了超声辅助反胶束萃取大豆蛋白的最佳前萃工艺为:超声功率270W、W0=20、温度40℃、KC1浓度为0.05mol/L、萃取时间30min、豆粉加入量0.015g/mL、pH值8.0.在此条件下蛋白前萃率为82.08%.  相似文献   

10.
采用JMP软件的定制设计,研究了含有碱性蛋白酶的AOT/异辛烷反胶束体系萃取全脂花生粉中蛋白质的过程,考察了酶与底物浓度比([E]/[S])、W0值、缓冲溶液pH、萃取温度、萃取时间等因素对蛋白萃取率的影响,建立了预测模型,优化萃取条件。试验结果表明:反胶束体系中加入碱性蛋白酶可显著提高萃取率,且[E]/[S]、萃取时间、缓冲溶液的pH和W0对萃取率的影响是极显著的(ρ<0.01)。此外,本文还分析了双因子的交互作用对萃取率的影响,根据回归方程和预测模型,获得最佳萃取条件:[E]/[S]为40 000 U/g,W0 12.8,缓冲溶液pH为7.3,萃取温度60℃,萃取时间为50 min,在此条件下反胶束萃取花生蛋白的萃取率达92.37%±0.58%。与不含酶的AOT反胶束体系相比,添加碱性蛋白酶的反胶束体系可以显著提高花生蛋白的萃取率。  相似文献   

11.
利用冷榨花生饼制备花生多肽饮料   总被引:2,自引:0,他引:2  
胡志和  郭嘉 《食品科学》2011,32(20):335-340
以冷榨花生饼为原料,采用碱法和酶水解法制备花生蛋白,以蛋白质提取率为指标,确定蛋白提取条件,并利用所提取蛋白或蛋白水解物经乳酸菌发酵制备花生多肽饮料。结果表明NaOH溶液提取花生蛋白的最佳条件为:pH9.0、温度55℃、料液比1:8(g/mL)、浸提2h,蛋白提取率80.68%;胰蛋白酶水解蛋白的最佳条件为:酶与底物比1:50(m/m)、底物质量浓度5g/100mL、pH9.0、水解温度50℃,蛋白提取率96.26%。以花生水解蛋白和脱盐乳清粉为原料,采用直投式乳酸菌为发酵剂,发酵条件为:花生水解蛋白质量浓度2g/100mL、乳清粉加入量1g/100mL、发酵剂与发酵液比1:25(g/kg)、42℃发酵5h、4℃后熟15h、蔗糖质量分数9%时的口感最佳。  相似文献   

12.
为提高花生芽中白藜芦醇(Res)提取率,此次试验优化了超声波-纤维素酶法联用提取花生芽中白藜芦醇的工艺。在单因素试验的基础上,进行了响应面优化试验,分析了酶的添加量、料液比和超声波处理温度、时间4个因素对白藜芦醇提取量的影响。结果表明:花生芽中白藜芦醇最优提取工艺为花生芽粉1.000 g,酶添加量7 mg,超声波处理温度50℃,超声波处理时间35 min,料液比1︰35(g/mL)。在此条件下,花生芽中白藜芦醇最大提取率为0.8239mg/g,约是传统乙醇回流法提取率的4.4倍。超声波辅助纤维素酶提取能有效地提高花生芽中白藜芦醇的提取率。  相似文献   

13.
研究超声辅助有机溶剂/糖双水相体系萃取螺旋藻中β-胡萝卜素最佳提取条件,并对其抗糖基化作用进行分析,在确定萃取体系为叔丁醇/麦芽糖双水相体系基础上,以螺旋藻粉末加入量、超声时间、超声功率为自变量,β-胡萝卜素得率为因变量,采用正交试验设计优化萃取条件。采用赖氨酸-乳糖模拟体系评价萃取后β-胡萝卜素抗糖基化能力。结果表明:3.4 g叔丁醇/2.4 g麦芽糖体系中,螺旋藻粉末加入量为0.05 g,补足水分至10 g,在超声功率90 W,超声时间5 min条件下,螺旋藻中β-胡萝卜素萃取得率为3.19 mg/g,在浓度为50~450 μg/mL范围内,其对模拟体系形成的晚期糖基化终产物的最高抑制率为47.28%,可为新型晚期糖基化终末产物(AGEs)抑制剂开发提供参考依据。  相似文献   

14.
使用双(2-乙基己基)磺基琥珀酸钠(AOT)、十六烷基三甲基溴化铵(CTAB)、十二烷基硫酸钠(SDS)分别和吐温80(Tween80)混合制备了三种反相微乳体系,并通过单因素实验研究了表面活性剂浓度、离子型表面活性剂含量、水分含量(W0)、水相pH、萃取温度和萃取时间等因素对蛋白质前萃率和KCl浓度、水相pH和萃取温度对蛋白质后萃率的影响,然后通过正交试验得到了最佳萃取条件。结果表明,Tween80-CTAB微乳体系对茶渣蛋白的提取效果较好,在表面活性剂浓度0.10 mol/L,离子型表面活性剂含量70%,水相pH13.0,W0 25,萃取温度40 ℃,萃取时间为40 min的最佳条件下,茶渣蛋白的前萃率达到最大值16.17%,其后萃率在KCl浓度为1.2 mol/L,pH7.0,提取温度40 ℃的最佳条件下可达到94.78%。SDS-PAGE电泳图的结果表明,反相微乳萃取得到的茶渣蛋白分子条带较小,即能够选择性的萃取小分子蛋白。  相似文献   

15.
研究了AOT/异辛烷反胶束法萃取玉米胚芽蛋白及玉米胚芽蛋白的加工功能性。在实验中分别考察了纤维素酶加酶量、AOT浓度、KCl浓度、缓冲液pH值、W0对玉米胚芽蛋白前萃率的影响,以及萃取时间、KCl浓度、缓冲液pH值对后萃率的影响,确定了前萃的最佳技术条件:加酶量为4 000 IU/g玉米胚芽、AOT浓度为3 g/50 mL异辛烷、萃取pH 6、KCl浓度0.1 mol/L、W0为25;后萃的最佳技术条件为:KCl浓度为0.5 mol/L、萃取pH 10.5,萃取时间40 min;对玉米胚芽蛋白的部分加工功能性进行研究,结果表明其吸油性(2.9 mL/g)、乳化性(54.5%)、乳化稳定性(86.5%)以及泡沫稳定性(58.3%)都较好,但吸水性和起泡性相对较差,玉米胚芽蛋白不但营养效价高,而且具有较好的加工功能特性,在食品工业中具有应用潜力。  相似文献   

16.
针对新疆红枣,采用绿色、高效的低共熔溶剂(Deep Eutectic Solvent,DES)为提取剂,通过超声波辅助技术提取其中的功能性成分——环磷酸腺苷(cyclic adenosine 3',5'-monophosphate,cAMP)。研究低共熔溶剂的摩尔比、含水量以及料液比、超声时间、超声温度与cAMP提取量的关系,通过单因素实验和响应面优化试验,得出新疆红枣中cAMP提取的最佳条件为:氯化胆碱与丙三醇摩尔比为1:3,DES体系含水量为44%,红枣粉末与DES的料液比为1:35 g/mL,超声时间为45 min,超声温度为45 ℃,此时与同等超声条件下的水提法和醇提法相比,低共熔溶剂法提取cAMP的含量最高为(284.15±0.06) μg/g。因此,选用超声波辅助低共熔溶剂提取新疆红枣中的cAMP是获得较高提取量的一种新型、高效和安全的方法。  相似文献   

17.
为了开发和利用花生蛋白资源,生产高附加值蛋白产品,以花生分离蛋白为原料,采用Alcalase 和Flavourzyme 分步水解法制备花生多肽。通过单因素试验和响应面中心组合设计试验,研究Flavourzyme 水解花生分离蛋白过程中加酶量、底物质量分数、酶解温度、酶解时间和酶液pH 值等因素对水解的影响。建立水解液中可溶性氮质量浓度与各种影响因素的回归模型;确定Flavourzyme 酶解反应的最佳工艺参数为pH7.0、加酶量1714U/g 底物、底物质量分数5%、酶解温度55℃、酶解时间90min。在此条件下,酶解产物中可溶性氮质量浓度为19.44mg/mL。  相似文献   

18.
对AOT[二-(2-乙基己基)琥珀酸酯磺酸钠]/异辛烷,SDS(十二烷基硫酸钠)/异辛烷-正辛醇,DTAC(十二烷基三甲基氯化铵)/正庚烷-正己醇3种反胶束体系萃取花生蛋白质的后萃工艺进行研究.主要研究了缓冲溶液pH值、萃取时间、萃取温度、超声功率、KCl浓度对花生蛋白后萃率的影响,分别得到了3种反胶束体系萃取花生蛋白质的最佳后萃工艺条件,并做验证试验.在最优工艺条件下制备不同的花生蛋白样品.通过色差分析,从宏观上比较不同反胶束体系制备的花生蛋白产品色泽的差异,进一步对比不同反胶束体系制备的花生蛋白的扫描电镜(SEM)照片,分析其微观结构的差别,试验结果表明最适合萃取花生蛋白的反胶束体系是AOT反胶束体系,且该体系萃取花生蛋白的后萃率为83.17%,较另外2种体系的后萃率都高.  相似文献   

19.
研究超声波辅助热水浸提野生软枣猕猴桃茎多糖的工艺条件。通过单因素实验分别考察固液比、超声功率、提取温度和提取时间对多糖得率的影响;以多糖得率为指标;采用正交实验得出最佳处理组合为:固液比为1∶25g/mL,首先在超声功率300W条件下作用15min,然后在50℃热水中浸提45min,在此条件下软枣猕猴桃茎多糖得率为10.23%。同传统的热水浸提法相比,相同时间条件下,超声波辅助热水浸提法的多糖得率提高了80%。  相似文献   

20.
以艾叶总生物碱的提取量为指标,通过单因素实验得到料液比、复合酶添加量、酶解时间、酶解pH、超声时间、超声功率、乙醇浓度和超声温度的最佳范围条件,使用Plackett-Burman法筛选出对艾叶总生物碱的提取量影响较为显著的因素,再利用Box-Behnken法对提取工艺进行优化分析,得出最佳的提取工艺条件。最后,采用纸片法和稀释法测定艾叶总生物碱提取物对大肠杆菌和金黄色葡萄球菌的抑制效果与最小抑制浓度。结果表明,影响艾叶总生物碱提取量的显著因素为超声时间、复合酶添加量和酶解时间。最佳提取工艺条件为:超声时间40 min,复合酶添加量1.60%,酶解时间1.5 h,料液比1:25 g/mL,酶解pH6.0,超声功率160 W,乙醇浓度80%,超声温度60 ℃,总生物碱的提取量最高为0.720±0.05 mg/g。艾叶总生物碱对大肠杆菌和金黄色葡萄球菌有抑菌活性,其最低抑菌浓度分别为3.2、1.6 mg/mL。该提取工艺实际值与预测值拟合度较高,可用于艾叶总生物碱的提取,且得到的艾叶总生物碱具有一定的抑菌活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号