首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
徐伟  张妍  傅徐阳 《食品工业科技》2012,33(20):184-187
以玉米淀粉废水添加葡萄糖20g/L,玉米浆40g/L,乙醇150mL/L为发酵基质,采用单因素和正交实验设计对葡糖醋杆菌(Gluconacetobacter xylinus)发酵产细菌纤维素条件进行优化。结果表明,最佳发酵条件为:装液量80mL/250mL,pH4.0,接种量9%(V/V),温度28℃;在此条件下得到细菌纤维素产量为4.41g/L。采用傅立叶转换红外光谱FTIR验证产物为细菌纤维素,并由SEM扫描电镜观察纤维素膜表面形貌。  相似文献   

2.
选用大豆糖蜜为发酵基质,利用木醋杆菌发酵制备细菌纤维素。研究糖蜜浓度、酵母浸粉添加量、发酵时间、发酵温度、接种量以及初始pH对细菌纤维素合成量、持水性和复水率的影响,结果表明:大豆糖蜜营养丰富,在大豆糖蜜浓度为15%时,在其中添加1.5%酵母浸粉、接种量为6%、初始pH4.5、30℃恒温静止发酵6 d后细菌纤维素合成量为1.17 g/100 m L,持水性为98.16%,复水率为292%,并利用傅里叶红外分析表明产物为细菌纤维素。  相似文献   

3.
以乳清液为原料,木醋杆菌为发酵菌种制备细菌纤维素。研究了葡萄糖添加量、发酵时间、发酵温度、接种量以及初始pH对细菌纤维素产量及葡萄糖利用率的影响。结果表明制备细菌纤维素的最佳条件:葡萄糖添加量为8%、发酵时间7 d、发酵温度30℃、接种量6%、初始pH5.0,在此条件下,细菌纤维素的产量为1.40 g/100mL,葡萄糖利用率为97.5%。应用此方法不仅可以获得高产量的纤维素,而且充分利用了原料,为工业化生产细菌纤维素提供了新的方法。  相似文献   

4.
以豆腐黄浆水为原料,木醋杆菌为发酵菌种,研究葡萄糖添加量、发酵时间、发酵温度、接种量以及初始p H对细菌纤维素产量及总糖利用率的影响。结果表明,生产细菌纤维素的适宜条件为:葡萄糖添加量为8%、发酵时间7d、发酵温度30℃、接种量6%、初始p H5.0,在此条件下,细菌纤维素的产量为1.21g/100m L;木醋杆菌对总糖的利用率达94.38%。  相似文献   

5.
细菌纤维素发酵条件的优化及结构分析   总被引:2,自引:0,他引:2  
以木葡糖酸醋杆菌Gyll为目标菌株,采用单因素法对液体发酵生产细菌纤维素的发酵条件(氮源、碳源、初始pH值、种龄、接种量和静态发酵周期)进行了优化,并对其代谢生产的细菌纤维素的微观结构进行了观察。结果表明,最优发酵条件为蔗糖5%,玉米浆干粉5%;初始培养基pH 6.2,发酵液中接种量10%;采用动静三步结合发酵时,一级种子的种龄24h,二级种子扩大化培养时种龄为20h,静态培养周期为8d。菌株最高产量为11.49g/L,约是优化前的5倍。通过红外光谱(FT-IR)、扫描电镜(SEM)、X射线衍射对细菌纤维素的表征,确定制得的细菌纤维素属于Ⅰ型纤维素,具有典型的网状结构,纤维束尺寸为纳米级且结晶度很高。  相似文献   

6.
正交实验法优选细菌纤维素的发酵工艺研究   总被引:4,自引:2,他引:2  
以正交实验设计方法,对木醋杆菌Acetobacter xylinum发酵产细菌纤维素的工艺进行了优化.采用正交设计助手,对发酵产细菌纤维素的初始pH、摇瓶装液量、碳源中果糖与葡萄糖的比例和氮源酵母粉的添加量等影响因素进行正交实验设计,以细菌纤维素产量为目标,在实验范围内得到各因素影响次序为摇颓装液量>氮源>碳源>初始pH,得到最优发酵工艺为:初始pH 6.0,摇瓶装液量50 mL/250mL摇瓶,果糖与葡萄糖质量比例为l:1,酵母粉14g/L.优化后细菌纤维素产量达到13.493g/L.  相似文献   

7.
采用葡糖醋杆菌(Komagataeibacter nataicola)RSZ01进行细菌纤维素发酵试验,利用单因素和正交试验对发酵培养基组成进行优化,并研究了菌株保藏时间、接种量和培养基初始pH对BC产量的影响。结果表明,保藏期限在30 d以内的菌种可基本保证BC产量;在接种量为8%、初始pH值为5.2时,最优发酵培养基组成为:葡萄糖2.50%,蔗糖3.00%,玉米浆2.2%,磷酸二氢钾0.35%,硫酸铵0.125%。在此条件下,葡糖醋杆菌RSZ01发酵产细菌纤维素的产量为12.05 g/L。  相似文献   

8.
为了提高木薯淀粉的发酵产脂能力,采用正交实验和均匀设计法对木薯淀粉酶法水解工艺进行了优化,结果表明α-淀粉酶量、糖化酶量和液化温度对木薯淀粉水解有显著影响。当淀粉酶量为756 U/g,糖化酶量为602 U/g,液化温度为92°C,其水解DE值达到97.3%。以该水解液进行皮状丝胞酵母B3(T.cutaneum B3)油脂发酵时,其生物量和油脂产量分别为16.38 g/L和7.22 g/L,比葡萄糖作为碳源的生物量和油脂产量高46.25%和41.12%,利用木薯淀粉水解液作为新型发酵碳源生产微生物油脂是一种理想的途径。  相似文献   

9.
木薯渣分批补料酶水解及酒精发酵的研究   总被引:2,自引:0,他引:2  
木薯渣是木薯淀粉加工后的废弃物,碳水化合物含量高。实验利用复合酶对木薯渣中淀粉和纤维素等碳水化合物非热水解进行了探索,结果表明:木薯渣具有较好的酶解性能;随着底物浓度的增大,酶解液糖浓度也不断提高,酶解得率逐渐降低;与间歇糖化工艺相比,16%底物在相同的水解条件和相同的酶添加量的条件下,采用4%的起始底物浓度,每隔12 h进行补料,葡萄糖得率从53.6%提高到72.4%;以不添加任何营养物质的水解液为原料进行酒精发酵,24h乙醇浓度达到24.9 g/L,乙醇得率达到42%,发酵效率为82%,乙醇产率达到1.04 g/(L.h),葡萄糖利用率达到97%。  相似文献   

10.
从pH值、碳源、氮源、常量元素、微量元素、生长因子、接种量、种龄、转速、发酵温度、发酵时间方面优化类球红细菌3757发酵生产辅酶Q10的工艺。结果表明,较优的培养基组成是:葡萄糖4.0 g/L,牛肉膏1.0 g/L,磷酸氢二钾0.9 g/L,磷酸二氢钾0.6 g/L,无水氯化钙0.075 g/L,EDTA 0.02 g/L,微量元素溶液10 mL,生长因子溶液10 mL,调节pH 7.0。微量元素溶液配方:硫酸锰1.6 g/L;生长因子溶液配方:维生素B11.0 g/L,烟酰胺(VPP)1.0 g/L,生物素0.016 g/L,对氨基苯甲酸1.0 g/L。较优的培养条件:种龄24 h,接种量10%,转速180 r/min,发酵温度32℃,发酵时间24 h。优化发酵工艺后类球红细菌辅酶Q10的产率较优化前提高了35.1%。  相似文献   

11.
利用酒糟浸出液制备细菌纤维素   总被引:1,自引:0,他引:1  
选用3种酒糟浸出液作为主要原料,利用木醋杆菌发酵制备细菌纤维素。结果表明:酒糟浸出液营养丰富,加入稻壳的白酒丢糟浸出液更适合发酵,在其中添加2%蔗糖、pH5.0和30℃恒温静止发酵15d后细菌纤维素的产量为2.7g/L,发酵后的pH值有变大的趋势。利用扫描电镜、傅里叶变换红外、X射线衍射对细菌纤维素的结构进行表征,证明产物是细菌纤维素,纤维直径在20~100nm之间。  相似文献   

12.
热带假丝酵母利用酒糟水解液发酵生产木糖醇的初步研究   总被引:5,自引:1,他引:5  
对热带假丝酵母(C.tropicalis)AY91009利用酒糟(丢糟)水解液发酵木糖醇进行了初步研究。结果表明:最佳发酵时间48h,最佳种子龄22h。摇瓶分批发酵工艺条件的最佳组合是:起始pH5.5,接种量15%(v/v),装液量135mL,氮源加入量为10mL含有10g/L酵母膏和20g/L蛋白胨的有机氮源。除水解液本身含有的木糖外,1/10的葡萄糖加入量(w/w)有利于菌体生长和木糖醇的转化,蔗糖则会抑制木糖醇的生成。培养基中添加6g/L的NaCl、3g/L的KH2PO4、0.2g/L的MgSO4.7H2O有利于木糖醇的积累。  相似文献   

13.
为提高木醋杆菌(Acetobacter xylinum)发酵苹果渣水解液生产细菌纤维素(Bacterial cellulose,BC)的产量,采用响应面法对发酵培养基进行优化,同时利用傅里叶红外光谱(FT-IR)和X-射线衍射(XRD)对发酵产物BC的性能和结构进行比较。单因素及响应面实验结果确定木醋杆菌(Acetobacter xylinum)发酵苹果渣水解液生产BC的最佳培养基配方为:蔗糖38.44 g、蛋白胨10.91 g、硫酸镁0.85 g、黄嘌呤0.87 g、乙醇10 m L、苹果渣水解液1000 m L、p H6.0,在此条件下BC的产量为7.19 g/L,较优化前(5.65 g/L)提高了27.3%。苹果渣水解液发酵产物BC结构性能与基本培养基发酵产物BC基本一致。说明苹果渣能够替代部分发酵原料发酵生产BC,且不影响BC性能。  相似文献   

14.
为提高葡糖醋杆菌生产细菌纤维素的产量,采用Plackett-Burman实验设计和Box-Benhnken Design相结合,对红薯酶解液、起始pH值、装液量等因素进行了研究,优化了产细菌纤维素的发酵工艺.实验结果表明,产细菌纤维素的最佳工艺为:红薯酶解液质量浓度50 g/L、起始pH值6.0、装液量50 mL/(250mL).该工艺条件下得到的细菌纤维素绝干质量(折算成质量浓度)达到4.80g/L,比优化前产量2.20 g/L提高了118%.  相似文献   

15.
木醋杆菌最佳发酵条件   总被引:1,自引:0,他引:1       下载免费PDF全文
通过试验筛选出木醋杆菌发酵产生纤维素的最佳碳源为葡萄糖,最佳氮源为酵母膏和蛋白胨,并通过正交试验确定出木醋杆菌发酵的最佳条件是:pH 5.0,温度30 ℃,葡萄糖1.5 g/dL,酵母膏0.5 g/dL,蛋白胨1 g/dL.乙醇、醋酸、乳酸对木醋杆菌生产纤维量都有增效作用,优化后的培养基添加0.4 g/dL醋酸,细菌纤维素产量为3.40 g/L.添加体积分数1%的乙醇,细菌纤维素产量为3.65 g/L.添加0.4 g/dL乳酸,细菌纤维素产量为3.54 g/L.  相似文献   

16.
为打破静置发酵生产膜状细菌纤维素的传统模式,并开发出新型细菌纤维素,采用摇床振荡培养的方法,发酵生产外观均匀且为颗粒状的细菌纤维素.利用单因素试验,以粒径为0.5cm~0.8cm的细菌纤维素颗粒产量及其占总纤维素比率为考察指标,研究转速、装液量、温度、接种量、种龄及培养时间对形成细菌纤维素颗粒的影响,探索最佳振荡条件.结果表明,转速及装液量对颗粒的形成及粒径影响较大,温度、接种量、发酵时间、种龄主要影响细菌纤维素颗粒产量;最优培养条件为140r/min,30℃、60mL装液量,种龄48h,3%接种量发酵5d,此条件下产物中粒径为0.5cm~0.8cm的颗粒纤维素占有率高,其产量达28.5g/100mL.  相似文献   

17.
居间驹形氏杆菌发酵大豆糖蜜生产细菌纤维素条件的优化   总被引:1,自引:0,他引:1  
通过居间驹形氏杆菌(Komagataeibacter intermedius CGMCC12562)发酵生产细菌纤维素,以大豆糖蜜作主要发酵原料,优化发酵工艺参数,提高细菌纤维素产量。在单因素试验的基础上,筛选出对细菌纤维素产量影响较大的4个因素,即大豆糖蜜可溶性固形物含量、玉米蛋白粉、ZnSO_4及苹果酸添加量,并通过Design-Expert响应面分析对这4个因素进行优化,得到最优的培养基及发酵工艺为:大豆糖蜜可溶性固形物含量14.13°Brix、玉米蛋白粉添加量1.6%、ZnSO_4添加量0.11%、苹果酸添加量0.41%;在30℃、接种量10%、装料量16%、初始pH 6.0的条件下静置培养7d,细菌纤维素产量高达(15.68±0.82)g/L。  相似文献   

18.
在均匀设计试验的基础上,将BP神经网络和遗传算法结合对油脂酵母ZW-25发酵木薯水解液产油脂的培养基进行了优化,得到的最优培养基配方为:木薯水解液稀释倍数1.0倍,蛋白胨0.6129g/L,NaNO_3 1.8687g/L,KH_2PO_4 1.1406g/L,MgSO_4·7H_2O 0.6379g/L。利用此培养基,在pH 7.0、接种量10%、培养温度25℃、摇床转速100 r/min的条件下将油脂酵母ZW-25振荡培养120h,生物量可达16.18g/L,油脂产量可达3.91g/L,菌株平均油脂含量可达24.17%。试验结果表明,将BP神经网络和遗传算法结合应用于培养基配方的优化是可行的。  相似文献   

19.
通过单因素试验对一株耐高温马克斯克鲁维酵母(Kluyveromyces marxianus)HY32的木薯乙醇发酵工艺进行了研究。结果表明,HY32利用木薯发酵乙醇的最佳工艺条件为料水比1∶5(g∶mL),发酵时间96 h,接种量11%,发酵温度40 ℃,液化时间1 h,液化温度95 ℃,液化酶添加量为20 U/g淀粉,糖化酶添加量为150 U/g淀粉,硫酸铵添加量6 g/L,初始pH=5.0。在此条件下,HY32发酵木薯酒精度可达8.90%vol,淀粉利用率与淀粉出酒率分别为87.120%和49.48%,残糖量为0.03 g/L。与未优化的初始发酵条件相比,发酵醪的酒精度提高了16.65%。  相似文献   

20.
在恒定pH值条件下,利用同型乙酸菌热醋酸梭状芽胞杆菌(Clostridium thermoaceticum)进行葡萄糖分批发酵、补料分批发酵和木薯粉发酵醋酸的初步研究.最适发酵葡萄糖模式:补糖的同时加入3倍量的氮源和微量元素补料分批发酵.醋酸产量40.2g/L,葡萄糖利用率98%,葡萄糖转化率0.82g/g,发酵时间为216h.结合葡萄糖发酵特点和木薯粉酶解条件摸索出木薯粉发酵条件:木薯液化后直接加入适量的糖化酶进行发酵并在发酵过程中补加适量糖化酶使醪液中葡萄糖浓度保持在一定范围内.醋酸产量47.3g/L,葡萄糖利用率94.75%,葡萄糖转化率0.89g/g,发酵时间192h.不添加过量的氮源和微量元素同时省略了糖化工段,底物转化率提高时间缩短,是比较理想的发酵模式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号