首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 456 毫秒
1.
目的建立可见-近红外光谱法结合偏最小二乘回归法对市售紫薯粉的品质进行评价。方法以市售紫薯粉为研究对象,对其原始光谱进行S-G 9点卷积平滑(savitzky-golay smoothing,S-G)、标准正态变量变换(standard normal variable transform,SNV)预处理,建立碘蓝值、花青素以及水分含量的偏最小二乘模型。结果花青素模型校正集和预测集的相关系数分别为0.9750和0.9461,均方根误差分别为0.1052 mg/g和0.1918 mg/g;碘蓝值模型校正集和预测集的相关系数分别为0.9687和0.9673,均方根误差分别为7.0256和7.1848;水分含量校正集和预测集的相关系数分别为0.9397和0.9219,均方根误差分别为0.5589%和0.5965%。结论基于可见-近红外光谱技术可以实现对市售紫薯粉的花青素、碘蓝值以及水分含量的快速无损检测,对市售紫薯粉的品质评价提供理论参考。  相似文献   

2.
目的 建立一种基于近红外光谱技术快速无损测定面包老化过程中的非冻结水含量的方法。方法 应用近红外漫反射光谱技术采集新鲜面包在放置2h、2d、3d、4d、5d、6d、7d时的光谱,对比导数、S-G平滑(Savitzky Golay smooth)、标准正态变量变换(Standard normal variable transformation,SNV)及多元散射校正(Multiplicative scatter correction,MSC)预处理方法,利用偏最小二乘回归法(Partial least square regression,PLSR)和多元线性回归法(Multiple Linear Regression,MLR)建立面包老化过程中的非冻结水含量的预测模型,并对比两种模型预测结果。结果 利用PLSR建模相较MLR建模结果较好,建立的模型预测结果较好,模型的校正集相关系数(Rc)和均方根误差(RMSEC)分别为0.9386和0.0236 , 验证集相关系数(Rv)和均方根误差(RMSEP)分别为0.9271和0.0245。结论 通过近红外光谱技术结合偏最小二乘法建立面包老化过程中的非冻结水含量模型可作为面包老化过程中的非冻结水含量无损快速测定的可行性方法,其含量变化可以有效预测面包老化,为面包老化的无损检测提供了新的可行方案。  相似文献   

3.
基于近红外光谱技术快速检测大豆中水分和粗脂肪含量。方法 首先采集350-2500 nm光谱范围的大豆近红外光谱,采用光谱-理化值共生距离(SPXY)算法将大豆样本划分为校正集样本与测试集样本,然后对原始光谱分别采用多元散射校正(MSC)、标准正态变量交换(SNV)、归一化(Nor)等9种方法进行预处理,最后使用偏最小二乘回归(PLSR)分析方法建立模型对样本进行定量分析。结果 原始光谱经过多元散射校正后建立的偏最小二乘回归模型对水分的预测精度最高,其校正集和测试集的相关系数分别为0.8964和0.9055 , 均方根误差分别为0.4211和0.5933;原始光谱经过归一化处理后建立的偏最小二乘回归模型对粗脂肪的预测精度最高,其校正集和测试集的相关系数分别为0.9084和0.9295 , 均方根误差分别为0.6897和0.6462。结论 近红外光谱(NIRS)结合预处理及偏最小二乘回归法,可以快速、准确的检测大豆水分和粗脂肪含量。  相似文献   

4.
目的 建立京郊鲜食杏白利糖度的定量分析预测模型, 实现对京郊鲜食杏品质的快速无损检测。方法 使用便携式近红外光谱仪采集900~1700 nm下鲜食杏的漫反射光谱信息, 使用多元散射校正(multiplicative scatter correction, MSC)、标准正态变量变换(standard normal variable transformation, SNV)和Savitzky-Golay卷积平滑(Ssavitzky – Ggolay smooth, S-G)对原始光谱数据进行预处理, 使用Kennard-Stone (K-S)算法以3:1比例将样本集划分成校正集和预测集, 利用竞争自适应重加权采样(competitive adaptive reweighted sampling, CARS)算法和连续投影算法(successive projections algorithm, SPA)对光谱进行特征波长筛选, 使用偏最小二乘回归(partial least squares regression, PLSR)算法建立京郊鲜食杏白利糖度的预测模型。结果 以MSC+S-G+ CARS+PLSR算法建立的北京鲜食杏的白利糖度预测模型取得较好的预测精度, 模型的校正集均方根误差、校正集相关系数、预测集均方根误差、预测集相关系数分别为0.3502、0.9747、0.4698、0.9616。结论 基于便携式近红外光谱技术所采集数据构建的京郊鲜食杏白利糖度预测模型准确性较高, 可以快速准确检测鲜食杏白利糖度, 从而实现对鲜食杏品质的快速无损检测, 为鲜食杏的品质检测提供了理论依据和方法指导。  相似文献   

5.
水分含量快速测定是保证泡芙制作品质的重要需求。利用IAS Online-S100型在线近红外光谱分析仪,采集了130个建模集样品和30个验证样品的近红外光谱,结合光谱预处理和偏最小二乘法建立泡芙水分定量分析模型。研究结果表明,采用移动窗口平滑(平滑点数为11)+SNV法进行光谱预处理,主因子数为9的条件下,模型的决定系数R2、校正集均方根误差(RMSEC)、交互验证均方根误差(RMSECV)和预测集均方根误差(RMSEP)分别为0.88、0.49%、0.55%、0.57%。模型的预测误差在±1.3以内,精度满足工厂的使用需求。  相似文献   

6.
冷鲜羊肉冷藏时间和水分含量的高光谱无损检测   总被引:1,自引:0,他引:1  
利用可见-近红外高光谱成像技术对冷鲜羊肉的冷藏时间和水分含量进行无损检测。通过波长400~1 000 nm可见-近红外高光谱系统采集160 个羊肉样本光谱信息,优选主成分-14-线性判别法对原始光谱建立羊肉冷藏时间的判别模型,校正集对羊肉冷藏时间的判别率为99.17%,预测集为100%,模型可较好地判别羊肉的冷藏时间。其次,针对羊肉冷藏过程中水分含量的变化,优选最佳预处理方法并运用偏最小二乘回归(partial leastsquares regression,PLSR)法建立水分含量预测模型;结果表明,经过Savitzky-Golay卷积平滑预处理的PLSR模型对水分含量的建模效果最优,校正集和预测集相关系数分别为0.888和0.784,交互验证均方根误差为0.696。研究表明,采用可见-近红外高光谱成像技术对冷鲜羊肉冷藏时间的判别和冷藏过程中羊肉水分含量的快速预测是可行的。  相似文献   

7.
采用偏最小二乘回归PLS建模算法,建立酸奶中非脂乳固体的近红外定量分析模型,并对模型进行验证评估。收集92组酸奶样品,并用漫反射方法采集得到近红外扫描光谱,光谱经过MSC、一阶导数、S-G平滑等预处理,选取波数范围6 000~10 000 cm-1,用PLS法建立得到了较优模型,其相关系数R为0.99078,均方根校正误差RMSEC为0.152,均方根预测误差RMSEP为0.330,性能指数PI为83.1。用此模型对25组酸奶样品进行了预测,预测效果较好。  相似文献   

8.
提出一种应用高光谱成像技术结合化学计量学检测牡蛎干制加工过程中水分含量的方法。采用高光谱成像系统,在400~1 100 nm范围内,采集到5个干燥时期的100个牡蛎干样本高光谱图像。提取所有样本感兴趣区域的平均光谱数据,对原始光谱数据进行多元散射校正(MSC)、卷积平滑(S-G)预处理,采用相关系数法提取8个特征波长。基于所提取的特征波长,建立光谱数据与水分含量的多元线形回归(MLR)和BP神经网络模型。结果表明:两种模型均有较好的预测效果。MLR模型的校正集、预测集和交叉验证集的相关系数较BP神经网络低;校正集、预测集和交叉验证集均方根误差分析结果表明,BP神经网络效果较MLR好。高光谱成像技术结合化学计量学方法可检测牡蛎干制过程中水分含量的变化。  相似文献   

9.
近红外光谱定性定量检测牛肉汉堡饼中猪肉掺假   总被引:1,自引:0,他引:1  
利用近红外光谱技术结合化学计量学方法,对不同肥肉占比的解冻牛肉汉堡饼中的猪肉掺假进行定性判别建模,并建立猪肉掺假比例的定量检测模型。结果表明:对不同掺假比例样品的判别,应用偏最小二乘判别分析方法效果优于主成分分析-支持向量机方法,最优模型校正集和验证集判别正确率均为100%。应用偏最小二乘方回归法定量检测不同肥瘦比解冻牛肉汉堡饼中的猪肉掺假比例,模型校正集和验证集的相关系数Rc和Rp、验证集均方根误差分别为0.968 9、0.861 1、7.221%。因此,应用近红外光谱技术可以实现对不同肥肉占比的解冻牛肉汉堡饼中的猪肉掺假进行定性判别和定量检测。  相似文献   

10.
为了实现准确无损检测"安哥诺"李果实的坚实度,试验利用MPA近红外光谱仪在4 000~12 500 cm~(-1)光谱范围采集了515个李果实样品的漫反射光谱,采用偏最小二乘法和反向传播人工神经网络建立"安哥诺"李果实坚实度的定量分析模型,使用波段筛选和多种光谱预处理方法优化了偏最小二乘模型。结果表明,4 000~7 267 cm~(-1)波段光谱数据经MSC校正的预处理方法处理后,偏最小二乘定量模型的校正集相关系数和均方根误差分别为0.878 1和1.22 kg/cm~2,预测集相关系数和均方根误差分别为0.836 5和1.51 kg/cm~2,优于BP-ANN模型。因此认为试验所建立的定量模型可为实现近红外无损检测"安哥诺"李果实坚实度提供技术支持和理论依据。  相似文献   

11.
以随机抽取的42个市售速溶茶产品为研究对象,采用近红外光谱分析技术并结合偏最小二乘法(PLS)对其水分、咖啡碱和茶多酚含量进行定标建模分析。建模结果以校正集相关系数(Rc)、校正集均方根误差(RMSEC)、交互验证相关系数(Rcv)和交互验证均方根误差(RMSECV)为指标评价模型的优劣。结果表明,水分较为理想的定标模型Rc=0.9266,RMSEC=0.6439,Rcv=0.8809,RMSECV=0.8509;咖啡碱的最优定标模型Rc=0.9964,RMSEC=0.1337,Rcv=0.9543,RMSECV=0.4958;茶多酚较为理想的定标模型Rc=0.9845,RMSEC=1.2097,Rcv=0.9679,RMSECV=1.8083。经验证集样品检验,水分、咖啡碱、茶多酚的预测相关系数分别是0.9050、0.9350、0.9557,与实际测定值吻合度较高,可为速溶普洱茶制品理化成分的快速检测提供参考。  相似文献   

12.
目的:建立一种快速检测高纤维素、木质素物料水分含量的方法。方法:以槟榔这种含高纤维素、木质素的中药材为原料,用近红外光谱仪采集近红外漫反射光谱,运用NIR Cal建模软件对光谱数据进行预处理,优选特征波长,并运用偏最小二乘法(PLS)分析建立槟榔水分含量定量模型。结果:槟榔水分含量定量模型校正集决定系数为0.994 2,校正误差均方根(RMSEC)为0.50;验证集决定系数为0.986 7,预测误差均方根(RMSEP)为0.68。结论:该方法简便、快速、安全、实用、准确,适用于含高纤维素、木质素物料的水分含量的快速测定。  相似文献   

13.
李水芳  单杨  范伟  尹永  周孜  李高阳 《食品科学》2011,32(8):182-185
采用Norris平滑加一阶微分数据预处理,蒙特卡洛交互验证(MCCV)的奇异样本筛选和CARS(competitive adaptive reweighted sampling)变量选择法,用Kennard-Stone(KS)法划分训练集和预测集,偏最小二乘(PLS)回归近红外光谱建模,对蜂蜜pH值和酸度进行定量分析。pH值和酸度校正模型的交互验证决定系数(Rcv2)、交互验证均方差(RMSECV)、预测集决定系数(Rp2)、预测均方差(RMSEP)分别为0.8516和0.8723、0.1214和2.1734、0.8205和0.8250、0.1196和2.4674。结果表明,该方法适于蜂蜜pH值的测定,而不宜用于测定蜂蜜酸度。  相似文献   

14.
目的:建立一种无损、快速高效的稻谷水分含量检测方法。方法:研究收集了不同年份的稻谷样品161份,运用近红外光谱结合化学计量学方法,通过剔除异常光谱和光谱预处理,采用偏最小二乘法建立稻谷水分含量预测模型。结果:采用主成分分析结合马氏距离的方法剔除异常光谱样品15个,最佳的光谱预处理方式为消除常数偏移量。训练集建立的预测模型(RCAL2)为0.9943,模型标准偏差(RMSEC)为0.21%,模型交叉验证决定系数(RCV2)为0.9936,模型交叉验证标准偏差(RMSECV)为0.32%,表明预测模型交叉验证预测样品水分含量准确度高。用验证集样品检验预测模型,模型验证集验证决定系数R 2 VA L为0.9801,模型验证集验证标准偏差(RMSEP)值为0.36%,相对分析误差(RPD)值为7.14,表明预测模型对未知样品的预测准确度高。验证集样品实测值与预测值均值方程T检验结果P值(双侧)为0.879,验证集样品实测值与预测值之间差异不显著,表明预测模型的预测结果可信度高,验证集样品预测值与实测值的误差在±1%,且90%以上的验证集样品其预测值与实测值的误差都在±0.5%以内。结论:建立的稻谷水分预测模型可以实现收储稻谷的无损、快速、准确检测。  相似文献   

15.
目的 利用高光谱成像技术建立库尔勒香梨分级指标的快速检测方法。方法 选择采摘期香梨作为研究样本, 以颜色(a*)、硬度(带皮硬度, Hardness)和可溶性固形物(soluble solids content, SSC)为研究指标, 使用高光谱成像系统采集样本900~1700 nm范围波长的漫反射光谱。提取样本感兴趣区域(region of interest, ROI)的光谱进行预处理, 采用多元散射校正(muliplication scattering correction, MSC)、标准正态变量变换(standard normal variable transformation, SNV)及其分别与卷积平滑滤波法(savitzky-golay, S-G)相结合的组合处理方法。基于不同的预处理结果建立偏最小二乘回归(partial least squares regression, PLSR)预测模型, 以验证集相关系数(Rv)和均方根误差(RMSEv)对模型进行评价。为进一步优化模型, 采用竞争性自适应重加权算法(competitive adaptive reweighted sampling, CARS)筛选特征波长, 并建立PLSR模型和最小二乘支持向量机(least square-support vector machine, LS-SVM)模型对比建模效果。结果 采用MSC-SG-PLS建立的模型判别准确率最高, 颜色预测模型的Rv和RMSEv值分别达到0.844和0.402; 硬度预测模型的Rv和RMSEv值分别达到0.823和0.417 kg/mm2; 可溶性固形物预测模型的Rv和RMSEv值分别达到0.902和0.301 %。采用CARS算法建立的LS-SVM模型效果最佳, 香梨颜色、硬度和SSC的模型预测值与标准理化值的相关系数分别为0.873、0.908和0.916, 均方根误差分别为0.375、0.385 kg/mm2和0.346 %。结论 研究表明, 利用高光谱成像技术可以实现库尔勒香梨多品质参数的无损检测。  相似文献   

16.
采用可见- 近红外漫反射光谱技术,结合偏最小二乘法,以不同时间采摘的哈姆林甜橙果实为样品建立其可溶性固形物、含酸量和VC 的无损检测数学模型,同时对不同光谱预处理方法和不同建模波段范围对模型的预测性能进行对比分析。结果表明:原始光谱在400~1000nm 波段的模型预测精度较高。经多元散射校正和5 点移动平均平滑预处理后,果实可溶性固形物含量的PLS 模型最好,校正集样品的相关系数为0.995RMSEC和RMSEP分别为0.026%、0.028%;预测集样品的相关系数为0.992。经多元散射校正和9 点移动平均平滑预处理后,果实含酸量的PLS 模型最好,校正集样品的相关系数为0.997,RMSEC 和RMSEP 分别为0.012%、0.013%;预测集样品的相关系数为0.997。经多元散射校正和9 点移动平均平滑预处理后,果实VC 含量的PLS 模型最好,校正集样品的相关系数为0.998,RMSEC 和RMSEP 分别为0.009%、0.009%;预测集样品的相关系数为0.999。可见由不同时间采摘的果实组成的样品集所建立的数学模型可以提高模型的预测精度,从而提高模型的适用范围。应用可见-近红外漫反射光谱检测哈姆林甜橙果实的内在品质可行。  相似文献   

17.
为研究利用傅立叶近红外光谱分析仪(NIRS)快速测定市售榨菜中亚硝酸盐的含量,先取榨菜样品按GB5009.33-2016测定其亚硝酸盐含量,再向榨菜样品中添加亚硝酸钠,制成亚硝酸钠浓度范围为0.122~39.0875 mg/kg,浓度梯度为0.66 mg/kg的60个样本校正集;与10个样本预测集采集对应的傅立叶近红外光谱曲线,将光谱信息与实际测量值相关联,利用TQ analyst建模软件进行计算分析。结果表明:建模最优预处理方法为一阶微分(1D)与Savitzky-Golay filter滤波平滑的组合预处理;比较分析偏最小二乘法(PLS)与主成分回归法(PCR)的亚硝酸盐样品建立的光谱模型,数据结果显示采用偏最小二乘法(PLS)的亚硝酸盐组分模型稳定性和预测能力更好;内部交叉验正均方差(RSMECV)、交叉验证决定系数(Rc)、外部预测均方根误差(RMSEP)、预测决定系数(RP)相关系数(r)分别为0.0310、0.9925、0.0141、0.9720、0.9378。经F检验与t检验,与国标所测结果无显著性差异。NIRS检测快速,无损便捷,可用于市售榨菜中亚硝酸盐残留量的定量检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号