首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
针对超磁致伸缩材料,设计一种超磁致伸缩微位移驱动器并实现对其控制。在分析超磁致伸缩材料工作特性和超磁致伸缩驱动器工作原理的基础上,确定超磁致伸缩驱动器的结构参数,并应用有限元软件对超磁致伸缩驱动器的机械结构进行电磁场分析,比较无偏置磁场和含偏置磁场下超磁致伸缩材料所处位置的平均磁场强度,验证驱动器机械结构的合理性。同时设计压控电流源,利用基于数字信号处理器的控制器中数模转换电路控制压控电流源,使激励线圈配合偏置线圈产生所需磁场。实验表明,在给定预紧力和偏置磁场条件下,超磁致伸缩材料在2A激励电流下可输出行程为27.1μm,位移精度0.1μm,磁滞回线的平均厚度为3.29μm,验证了超磁致伸缩驱动器结构设计的合理性。  相似文献   

2.
磁致伸缩薄膜动态驱动特性的研究   总被引:1,自引:0,他引:1  
提出一种新的磁致伸缩薄膜动态驱动特性的研究方法,其原理是以磁致伸缩薄膜复合梁的等效形变为基础,将磁致伸缩驱动应力转换为等效驱动力矩,建立磁致伸缩薄膜的强迫振动动态模型,通过受迫振动理论来研究磁致伸缩薄膜的动态特性。对该模型进行了仿真计算和试验验证,表明该模型可以描述磁致伸缩薄膜的动态行为。该方法对薄膜驱动器的运动分析与结构优化。最终实现基于磁场自感知的超磁致伸缩薄膜驱动器的闭环控制具有参考意义。  相似文献   

3.
超磁致伸缩薄膜悬臂梁的非线性变形分析及试验   总被引:2,自引:0,他引:2  
将双层超磁致伸缩薄膜(Giant magnetostrictive thin film,GMF)悬臂梁的磁致伸缩作用等效为分布弯矩作用,以简化磁机耦合模型。在几何非线性弹性变形理论基础上,根据哈密顿原理推导出超磁致伸缩薄膜非线性变形的控制方程,并给出超磁致伸缩薄膜悬臂梁静态几何非线性变形模型、非线性主共振和超谐波共振响应模型。采用悬臂梁式超磁致伸缩双层膜(铽镝铁—聚酰亚胺—钐铁)进行变形特性的试验研究,发现超磁致伸缩双层膜表现出明显的几何非线性变形特征,悬臂梁端部位移量约为厚度的2/3;同时检测到悬臂梁的超谐波共振现象,前三阶超谐波共振的驱动效率与一阶主共振的驱动效率具有可比性。将所提出的静态非线性变形模型和振动响应模型分别与试验结果对比发现,两个模型可较好地说明双层超磁致伸缩薄膜的非线性变形特性,为有效地利用超磁致伸缩薄膜设计开发微驱动器和微传感器提供依据。  相似文献   

4.
为了充分发挥超磁致伸缩材料的性能,提高超磁致伸缩驱动器的输出特性,提出了一种双相对置超磁致伸缩新型驱动器,介绍了新型驱动的结构组成与工作原理.在建立双相对置超磁致伸缩驱动器轴对称模型基础上,利用有限元法对驱动器的磁场分布进行了分析,并通过数值积分方法计算在不同励磁电流激励下超磁致伸缩棒的伸长量,并最终计算出驱动器的输出位移,根据计算结果对驱动器的线性工作范围做出了有效的估计.结果表明,新型驱动器具有更好的输出线性度和更大的输出位移.  相似文献   

5.
研制了以超磁致伸缩合金为驱动器的微型管道机器人,提出了一种以管外磁场无缆方式驱动控制微型管道机器人行走的方法,使其可靠性和实用性都得到提高。控制原理是通过管外时变振荡磁场频率的改变,媒介于微机器人磁致伸缩微驱动器的磁机耦合作用,将时变振荡磁场能转换成机器人弹性腿的振动机械能,从而实现机器人的行走。介绍了系统组成及工作原理,然后对行走动态特性进行了深入研究,得出了基于振动原理的微机器人移动速度和牵引力的方程式。试验表明机器人系统切实可行,能实现微型机器人的外磁场无缆驱动控制。  相似文献   

6.
微驱动器的研究与发展   总被引:1,自引:0,他引:1  
微电子机械系统(Micro Electro Mechanical Systems,简称MEMS)是在微电子技术的基础上兴起的一门应用技术,微驱动器是MEMS的重要组成部分.首先阐述了几种新型驱动原理:机械化学驱动、渗透驱动、生物能源驱动、仿生驱动、光致伸缩驱动,接下来介绍了常用驱动技术压电驱动、静电驱动、磁致伸缩驱动和气动驱动的当前研究成果.总结了常用微驱动器的驱动方式及特征.提出了目前研究中存在的主要问题,在此基础上简要分析了微驱动器的发展前景.  相似文献   

7.
超磁致伸缩薄膜磁致伸缩耦合机理的有限元分析   总被引:1,自引:0,他引:1  
从微观能量角度分析了超磁致伸缩薄膜的磁致伸缩机理,建立了超磁致伸缩薄膜的非线性强磁—机械耦合模型。设计了简支梁式超磁致伸缩薄膜的驱动磁场并对其进行实验研究。通过Ansys有限元分析软件对简支梁式超磁致伸缩薄膜驱动模型进行了模拟分析,最终得到的薄膜的内部磁场分布结构及固有频率。结果表明,采用椭圆积分法得到薄膜内部磁场分布的数学模拟计算结果与有限元仿真结果基本一致。  相似文献   

8.
超磁致伸缩驱动器及有限元分析方法的研究   总被引:7,自引:5,他引:2  
新型超磁致伸缩材料TbDyFe具有输出力大、位移分辨力高及位移范围大等特点,将其应用于微位移驱动器中,将极大的提高驱动器的性能指标,从而推动超精加工技术的发展.文中介绍了应用超磁致伸缩材料研制的驱动器的结构及性能,并利用有限元方法对建立磁-机械耦合模型进行分析,以利于计算机的模拟仿真,对驱动器进行分析及设计.  相似文献   

9.
为了充分发挥超磁致伸缩驱动器的特性,提高超磁致伸缩驱动器驱动磁场的性能,通过采用电流励磁法,建立基于磁感应强度为控制变量的单层空心线圈、多层空心线圈和带超磁致伸缩棒的多层线圈的轴线磁感应强度数学模型,分析超磁致伸缩棒、线圈长度和线圈半径对驱动磁场的均匀性和驱动磁场大小的影响.仿真结果表明,减小超磁致伸缩棒与驱动线圈之间的气隙,能提高驱动磁场的线性度;在满足设计要求的范围内,增加线圈长度,减小线圈半径,能够提高驱动磁场均匀性;仿真结果对超磁致伸缩驱动器驱动磁场的设计提供了一定的理论依据.  相似文献   

10.
谐振式超磁致伸缩音频驱动器设计   总被引:1,自引:0,他引:1  
超磁致伸缩驱动器具有输出振幅过小导致转换效率不高的问题,针对此问题提出了谐振式超磁致伸缩音频驱动器的理念,利用音叉的机械结构实现了超磁致伸缩驱动器振幅的放大,同时利用音叉的频响曲线去修正超磁致伸缩驱动器的频响曲线,以提升扬声器响度。研究了音叉的选择,及其中超磁致伸缩驱动器的具体设计过程,并在专业消音室对谐振式超磁致伸缩音频驱动器进行了性能测试,测试结果表明驱动器改进后超磁致伸缩扬声器在音响上有显著提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号