首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以国内现有高速车型为研究对象,综合考虑驱动系统齿轮传动刚度时变特性,实际列车牵引特性和基本阻力特性,通过建立高速列车三维动车动力学模型开展高速列车传动系统与车辆动力学相互作用的研究。齿轮啮合刚度时变特性使得齿轮传动内部产生激励,在刚度激励和啮入冲击激励作用下轮对垂向振动响应较大,但不影响轮对其它运动形态;由于轮轨接触的负斜率特性,仿真分析了轮对出现失稳振动后传动系统的响应,发现相对轮对旋转振动而言轮对纵向振动对列车驱动系统的影响更大,但这两种振动形态往往通过轮轨切向力耦合在一起。  相似文献   

2.
张斌  王超 《机械》2021,48(5):37-42,51
为研究重载列车在曲线上由纵向冲动产生的压钩力对曲线钢轨磨耗的影响,基于车辆-轨道耦合动力学理论和轮轨磨耗理论,建立车辆动力学模型和轮轨磨耗模型,分析了不同压钩力作用下重载列车运行安全性及小半径曲线钢轨的磨耗规律.计算结果表明,小于400 kN的压钩力对钢轨磨耗和车辆运行安全影响不大,当压钩力大于800 kN后会导致车钩发生偏转,使轮轨横向力和轮轨垂向力增大,极大程度地影响轮轨磨耗及车辆运行安全性.在400 kN压钩力作用下钢轨工作边处累计磨耗量增大了32.6%,钢轨磨耗功增大6.3%;在800 kN压钩力作用下钢轨工作边处累计磨耗量增大了104.3%,钢轨磨耗功增大50.9%;在1200 kN压钩力作用下钢轨磨耗功增大144.7%.  相似文献   

3.
为掌握服役过程中齿轮偏心对机车车辆传动系统动态响应特性的影响,建立了考虑齿轮传动系统的机车车辆动力学模型。齿轮传动系统通过齿轮啮合、悬挂系统与轮轨关系等耦合集成于整车动力学模型,该模型详细考虑了齿侧间隙、时变啮合刚度、轨道几何不平顺及轮轨接触等非线性因素,能够更加真实地反映牵引状态下的车辆动力学行为;基于该模型,系统研究了主动齿轮不同偏心量下的机车车辆齿轮传动系统动力学行为,并通过了线路试验验证。结果表明,齿轮传动系统的动力学性能直接受到偏心影响,其传动平稳性随着偏心量增加而逐渐恶化。此外,在齿轮箱不同监测点中靠近小齿轮端,垂向加速度受齿轮偏心的影响最为显著,该测点可用于齿轮偏心健康监测。研究为机车车辆齿轮传动系统的智能运维提供了理论基础。  相似文献   

4.
针对车轮多边形磨耗不同状态下对车辆动力学影响展开研究,建立轮轨柔性某地铁B型车辆刚柔耦合动力学模型,计算车轮多边形阶数和谐波幅值变化对轮轨垂向力、轮轨振动、运行平稳性等车辆动力学性能的影响。结果表明:阶数和谐波幅值在速度增大时轮轨垂向力逐渐增大;阶数14阶、18阶是轮对和轴箱振动加速度随谐波幅值变化产生振动的主要诱因;动力学指标中轮重减载率在18阶、0.04 mm时对其影响最大;车轮多边形使钢轨垂向动位移和振动加速度增大,谐波幅值对钢轨振动特性更有影响。建议考虑制造轮轨柔性,18阶、0.04 mm时对轮轨璇修打磨,以提高动力学性能和行车安全性。  相似文献   

5.
首先基于刚柔耦合理论,考虑了轮对、轴箱和构架的柔性,建立了动车组车辆刚柔耦合动力学模型;然后又通过模态叠加法建立了轨道的动力学模型,从而发展成车线-刚柔耦合动力学模型。随后,在车轮上施加20阶理想多边形,研究了300 km/h下轴箱垂向加速度、轮轨垂向力和轮轴弯曲应力的响应,结果表明:轴箱垂向加速度和轮轨垂向力以577 Hz的多边形通过频率波动,而轮轴弯曲应力主频为28.8Hz的车轮转频,在此基础上,叠加了多边形的通过频率,因此多边形的通过频率577 Hz会分岔为548 Hz和605 Hz两个频率。通过对不同速度和不同多边形幅值下车辆响应的研究可以得到以下结论:随着速度和多边形幅值的增大,轮轨力最大值总体上呈现增大趋势。从轮轨力最小值上看:速度越大,多边形幅值越大,则更容易发生轮轨分离。当车轮多边形通过频率与轮轨耦合共振频率耦合,会引起轮轨垂向力的增大。当与轴箱自身模态频率耦合时会导致轴箱加速度的变大。轮轴应力则主要受到轮轨耦合共振模态以及轮轴自身的弯曲模态影响。  相似文献   

6.
金潇  刘林  黄珊  周子伟 《机械》2023,(3):27-33
牵引电机谐波转矩对由牵引电机、齿轮传动、轮轨接触等组成的铁路机车传动系统动态载荷、振动噪声等动态特性有着重要影响。本文基于国内某交流电力机车牵引电机的结构参数和功能特点,通过虚位移原理获得了脉动谐波转矩,并将其作为激励输入到建立的考虑齿轮传动系统动态啮合的车辆-轨道垂-纵耦合动力学模型中,研究了牵引电机谐波转矩对机车传动系统动态特性的影响规律。研究结果表明,谐波转矩会加剧传动系统齿轮动态啮合力和动态传递误差的幅值波动,从而进一步导致轮轨动态相互作用力波动程度加剧,但受轴重转移影响,轮轨黏着系数均方根值增载位轮对小于减载位轮对,且增载位轮对受谐波转矩影响较小,而减载位轮对受谐波转矩影响较大。  相似文献   

7.
通过MATLAB软件模拟局部不平顺,作为机车模型的外部激扰输入,根据机车动力学理论,以机车轮轨垂向力指标为依据,运用SIMPACK多体动力学仿真软件,分析谐波型局部不平顺沉降的恶化及交点型局部不平顺凸起的恶化对轮轨系统动力性能的影响。仿真结果表明,当谐波型局部不平顺发生沉降恶化时,即使恶化的幅值较小,也会造成轮轨动力响应的严重恶化,引起强烈的轮轨冲击振动;并且速度越大,轮轨动力作用越剧烈。当交点型局部不平顺发生凸起恶化时,在相同速度下,不同恶化时期的轮轨垂向力的最大值基本不变,但轮轨垂向力的最小值变化较大,导致轮重减载率变大,影响机车运行的安全。  相似文献   

8.
随着机车速度的提高,对机车的运行安全性和稳定性提出了更高的要求。考虑不平衡质量、齿轮啮合刚度、轴承支撑刚度和轮轨接触的影响下,建立机车传动系统有限元单元动态模型。其次,采用迭代法,求取了临界转速值及振型响应。分析齿轮啮合刚度、轴承支撑刚度、轮轨接触力作用下,传动系统齿轮单元幅频响应变化。结果表明:复杂环境因素下,传动系统齿轮啮合频率及固有频率处,系统振动响应较大。轴承通过频率的振动响应微弱。轮轨接触刚度影响下,传动系统啮合频率、固有频率及轴承通过频率的振动响应受到极大干扰。  相似文献   

9.
为了研究独立旋转车轮转向架簧下轴桥的弹性特性对整车动力学性能的影响,以某型100%低地板车整车为研究对象,在建立其多刚体模型的基础上,考虑轴桥的振动弹性特性,进一步建立了3模块整车刚柔耦合动力学模型。在轨道随机不平顺激扰下开展整车动力学性能对比分析,发现刚柔耦合模型较多刚体模型轮轴横向力和脱轨系数升高,轮轨垂向力和轮重减载率降低。轴桥振动响应的计算结果表明,刚柔耦合模型的轴桥横向振动响应较多刚体模型幅值降低约15%;轴桥弹性特性分析结果显示,当轴桥结构垂向自振频率在15~25 Hz之间时,其模态振型会被轮轨动态作用激发,从而对整车动力学性能产生较大影响。在此研究基础上,开展了轴桥结构的轻量化设计,在保证整车动力学性能的约束条件和结构强度的前提下,优化了其几何截面并将其质量降低了约15%,在一定程度上为100%低地板车的轴桥设计提供了工程借鉴。  相似文献   

10.
针对青藏铁路冻土带路基下沉问题,为了实现高原机车转向架低动力作用,基于车辆多体系统动力学理论,建立了两种不同悬挂方案的高原机车动力学模型,研究了不同一、二系悬挂刚度比μ对车体、构架以及轮轨垂向振动的影响。发现一、二系悬挂刚度比在0.5~3范围内变化时,轮轨垂向力和构架垂向振动加速度增大了11.24%和12.2%,车体平稳性指标和垂向加速度分别减小了11.3%和15%,并分析了高原线路上两种悬挂方案机车动力学特性。计算结果表明,选择刚度较大的二系悬挂,虽然一定程度上恶化车体平稳性指标,但较小的一系刚度在中低速范围内,能够降低由轨道不平顺引起轮轨垂向冲击,显著抑制了对轨下部分损伤较大的低频振动,减小运行过程中机车对轨下部分的损害。  相似文献   

11.
基于刚柔耦合动力学理论并采用UM与HYPERMESH、ANSYS建立基于弹性车体的地铁头车刚柔耦合模型,研究将车体考虑成弹性时地铁车辆动力学特性。结果表明:随着速度的提高,平稳性指标和舒适性指标都增大,脱轨系数最大值先减小后增大,轮轨横向力最大值先减小后增大,轮轨垂向力最大值逐渐增大,车轮磨耗功最大值逐渐减小,在速度低于100 km/h时,轮重减载率最大值先增大后减小,之后逐渐增大,各项动力学指标均满足国家相关标准;与刚体动力学模型计算相比,采用刚柔耦合模型计算时考虑了车体的弹性变形,且两者计算结果个别差异较大,建议在计算地铁车辆动力学性能时将车体进行弹性化处理。  相似文献   

12.
考虑牵引电机扭矩变化和轮轨黏着力波动等外部激励,以及齿侧间隙、时变啮合刚度和传递误差等内部激扰,采用集中质量法建立了某和谐号机车直齿齿轮传动系统的动力学模型。利用数值方法求解了电机扭矩变化时齿轮传动系统的动力学响应。结合分岔图、相平面图、庞加莱截面图、时间历程图、频谱图,分析了电机扭矩变化对系统非线性特性的影响规律,揭示了系统由单周期、多周期到混沌运动的非线性动力学演化机理。  相似文献   

13.
根据2.5 MW风力发电机行星齿轮传动系统在随机风场中复杂变工况的工作特点,利用双参数威布尔分布模型描述随机风速的分布,获得由随机风速引起的时变风载。采用集中参数法建立风力发电机行星齿轮传动系统平移-扭转耦合动力学模型。综合考虑风力发电机行星齿轮传动系统的轴承支撑刚度、齿轮副时变啮合刚度等内部激励对传系统的影响,对变风载下2.5 MW行星齿轮传动系统的动力学特性进行仿真计算分析,求得在外部风载作用下各构件的位移响应与速度响应,为风力发电机行星齿轮传动系统的故障诊断和优化设计奠定了良好的理论基础。  相似文献   

14.
为研究货车车轮扁疤状态下的动力学表征,为车轮扁疤的间接识别提供理论支撑,建立了配置有转K6转向架的C80铁路货车动力学模型,并推导了扁疤对钢轨的垂向冲击力公式及振动加速度公式,研究了车轮扁疤故障状态下的车轮轮轨力响应、承载鞍振动响应情况,并分析了故障状态下车轮扁疤长度与轮轨垂向力对应关系,为扁疤的故障检测和识别提供基础支撑.结果表明:扁疤故障状态下,轮轨垂向力与扁疤长度呈正比例关系,且轮轨力最大值随车辆运行速度增大而呈现先增大后缓慢减小的趋势,承载鞍振动加速度变化趋势与轮轨垂向力基本保持一致.  相似文献   

15.
为准确预测高速列车轮对擦伤对车辆性能的影响,基于车轨耦合动力学和非赫兹接触理论,对新旧两种轮对扁疤的几何外形进行数值描述,建立了考虑轮对扁疤的高速列车动力学模型,分析了轮对扁疤激扰对车辆走行部的影响。结果表明,旧扁疤对走行部冲击要大于新扁疤,随着扁疤尺寸的增大,走行部各部件受到的冲击载荷与振动加速度逐渐增大;随着速度增大,轮轨间垂向冲击先增大、后减少;当扁疤长度为10mm,速度为100km/h 时,轮轨垂向力达到最大值;随着速度增加,走行部簧下部件与簧上部件的振动特性差异不断加大。以轮轨垂向力为判断标准时,轮对扁疤尺寸应限制在30mm以内。  相似文献   

16.
为表征车轮多边形化对车辆通过道岔的动力学性能的影响,以高速动车组和客运专线12号道岔为研究对象,建立高速车辆-道岔耦合动力学模型。多边形车轮采用简谐波与实测多边形两种形式模拟,综合考虑多边形车轮经过道岔的状态、左右侧车轮分布方式、多边形阶数和幅值等影响因素,计算车轮多边形化车辆通过道岔的动力响应。结果表明,多边形车轮半径偏差变化率最大点经过心轨处的响应最大。随着多边形阶数增加,动力响应呈先增大后减小的趋势,15、16阶时响应达到最大;左右侧车轮多边形同相位分布比反相位分布的响应大。多边形幅值越大,轮轨垂向力和轮对垂向加速度越大,当幅值达到0.20 mm,轮轨垂向力超过安全限值,且幅值超过0.16 mm,响应会明显增强。多边形车轮对车辆通过道岔的平稳性影响较小。  相似文献   

17.
利用钢轨焊接接头不平顺测量仪Railprof,测量并分析国内某高铁线路钢轨的焊接接头区在打磨前后几何不平顺的变化,发现钢轨打磨能够减小焊接接头的不平顺幅值。基于车辆-轨道耦合动力学理论,建立高铁车辆-轨道耦合动力学模型,以实际测得的钢轨焊接接头不平顺作为轮轨界面不平顺激励输入,分析焊接接头不平顺引起的轮轨动力学响应的特征,并讨论行车速度对焊接接头不平顺激扰下轮轨动力学响应的影响。结果表明,轮轨垂向力随着车辆通过速度的增加而增加,打磨后的轮轨垂向力以及轮重减载率相比于打磨前明显降低;钢轨打磨改善了焊接接头的不平顺性,并使轮轨的动力学性能(安全性)相应地得到改善。  相似文献   

18.
作为轨道车辆常见的车轮损伤类型,车轮异常磨耗对列车安全运营形成巨大挑战,严重影响轨道交通高质量发展,同时,其形成机理及关键影响因素也长期困扰着铁路科研人员。作为轨道车辆传递牵引动力的关键装置,驱动及传动系统作为激励源和激励传递路径参与整车耦合振动,特别是扭转振动,显著影响着轮轨动态相互作用,而在车轮磨耗研究中却是常被忽略的因素。本文基于模态叠加法和多体动力学理论,在考虑柔性车轮的基础上,分别建立考虑驱动与传动系统和不考虑驱动与传动系统的刚柔耦合车辆动力学模型,通过Fa Strip与USFD相结合建立的磨耗模型,分析在车轮磨耗影响下驱动与传动系统对轮轨动态接触特性的影响。研究结果表明,驱动及传动系统对车轮磨耗的发展起到了明显的促进作用,从而对轮轨接触动态响应的影响显著,特别是考虑驱动及传动系统后,柔性车轮齿轮一节径模态伴随轮对横向弯曲容易被激发,对轮轨横向蠕滑率影响远远大于对纵向蠕滑率和自旋蠕滑率的影响。因此,在进行车轮磨耗机理分析及激励计算时应考虑驱动及传动系统的影响。  相似文献   

19.
为研究轮缘润滑对重载列车曲线通过性能的影响,建立重载列车-轨道三维耦合动力学模型,该模型主要包含重载列车系统模型、有砟轨道系统模型和考虑多点接触和复杂接触状态的轮轨滚动接触模型。利用该模型对比分析惰行工况和驱动工况下,轮缘润滑对重载列车曲线通过时轮轨动态相互作用的影响。研究结果表明:轮缘润滑对机车曲线通过时的轮轨动力相互作用影响显著,在机车轮对通过小半径圆曲线过程中,当存在轮缘润滑时,外侧轮缘位置处的轮轨纵向蠕滑力明显较无轮缘润滑时明显降低,轮对导向能力削弱;在惰行和牵引工况下通过圆曲线时,存在轮缘润滑的轮对冲角均明显增大;轮缘润滑对重载列车钩缓系统响应影响不大。  相似文献   

20.
车轮扁疤所诱发的轮对弹性变形会导致车辆系统部件振动加速度增大,但目前相关研究主要采取刚体动力学模型。为更准确研究车轮扁疤对高速车辆振动特性的影响,在目前成熟且广泛已知的车辆-轨道耦合模型和车辆系统刚柔耦合模型的基础上,综合考虑车辆主要部件的弹性振动和轨道弹性振动的影响,建立改进的车辆-轨道动力学模型。结果表明,在扁疤作用下,轮对弹性变形对轮轨垂向力影响甚微,但对轴箱端盖垂向振动响应影响很大;扁疤所产生的冲击载荷经过转向架或者钢轨的传递作用,会导致同轴另一侧以及转向架同侧处的轮轨力产生小幅值波动;扁疤所在轮对的左右两个轴箱端盖振动加速度要远大于同一转向架的其他两处;在低速时,车轮扁疤对构架端部垂向振动加速度也有着不可忽视的影响。提出的研究成果揭示了车轮扁疤作用下车辆-轨道系统弹性变形的重要性,对车轮状态监控也具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号