首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
电子产品快速发展同时导致了热量高等问题,为了延长电子产品使用寿命,研究平板微热管的传热性能是解决该问题的关键。为了研究激光制备针翅平板微热管的传热性能,首先采用理论建模确定针翅最优结构,然后通过激光制备针翅平板微热管,最后通过实验研究倾角、工作液体、充液率以及槽道结构等因素对针翅平板微热管传热性能的影响,并以温差、热阻以及当量导热系数作为评价针翅平板微热管传热性能指标。结果表明:以水为工作液体,倾斜角度为90°,且在充液率为45%时的针翅平板微热管的传热性能最佳。  相似文献   

2.
电子自动化理论研究逐步深入以及电子产品更新速度加快,散热问题日益严峻。为了研究激光制备针翅平板微热管的传热性能,首先采用理论建模确定针翅结构,然后使用MATLAB软件计算出其最优解,再通过激光制备针翅平板结构,最后通过沸腾单因素实验验证其计算出的最优解对针翅平板微热管传热性能的影响,并以温差作为评价针翅平板微热管传热性能指标。结果表明:当针翅结构高为0.3mm,宽为0.2mm,横向间距0.3mm,纵向间距0.3mm时,平板微热管的传热性能最佳。  相似文献   

3.
研究了热流密度为100 W/cm2的固态组件的基板和壳体的等效导热系数、厚度和横截面面积对整个组件的冷却装置的热阻的影响。基板和壳体的导热系数从160 W/(m·K)提高到800 W/(m·K)时,冷却装置总热阻分别下降约1.2℃/W和0.55℃/W,下降比例分别为33.3%和15.5%;基板厚度从0.4 mm增加到1.6 mm时,冷却装置总热阻下降约0.78℃/W,下降比例为22.0%;基板横截面面积从0.42 cm2增加到2.1 cm2时,冷却装置总热阻下降约0.52℃/W,下降比例为15.1%;壳体厚度从0.8 mm增加到2.4 mm时,冷却装置总热阻下降约0.43℃/W,下降比例为11.6%;以上各种情况中冷却装置总热阻下降趋势为先急后缓。对于目前的组件而言,参考上述结果进行优化,将使组件的冷却得到明显改善。  相似文献   

4.
基于多孔微热沉的大功率LED冷却技术研究   总被引:7,自引:1,他引:6  
针对大功率发光二极管(Light-emitting diode,LED)具有的高热流通量、表面温度要求严格控制的特点,提出一种新型高效的基于多孔微热沉系统的散热技术来满足大功率LED散热封装的需求。分析多孔微热沉系统的工作原理以及传热特性,基于局部热力学平衡建立多孔微热沉流动与传热的数学模型,并用SIMPLE算法进行数值求解,得出微热沉的温度分布以及影响微热沉性能的一些因素。数值研究表明:在高热流密度下,微热沉散热表面的温度能维持较低水平,即使在热流达到200W/cm2时,散热表面的最高温度才55.2℃;提高工质入口流速可以降低微热沉内的温度以及散热表面的温度水平。多孔微热沉系统能够有效地解决大功率LED的散热问题,提高LED芯片的可靠性与使用寿命。  相似文献   

5.
对一种用于微电子产品散热的小型两相热虹吸环进行性能测试,这种散热元件将微电子产品产生的高热流密度传到外界.实验表明该小型两相热虹吸环性能优异,在传热在142W时蒸发器平均温度84.3℃,热阻为0.077℃/W.启动性能好,在室温为21℃、蒸发器平均温度为38.3℃时启动.  相似文献   

6.
IGBT模块焊接层空洞会使得模块局部热阻增加、散热能力降低进而导致表面温度场畸变。本文基于红外热像仪和DSP控制单元搭建温度分布检测系统,实现IGBT模块温度场信息的采集、处理和分析。根据实验需要采用自制IGBT模块研究空洞对温度场的影响。通过对不同空洞尺寸的模块进行实验,获得空洞率与温度场分布特性之间的关系。结果表明IGBT模块温度分布特性可以用来进行空洞的定量检测,并给出了根据表面温度特性对IGBT模块性能评估的一般方法。  相似文献   

7.
热管是一种具有极高导热性能的传热元件,它通过在全封闭真空管内工质的气液相变来传递热量,然而伴随着电子元件的大功率化,热管散热器已经不能满足当今的散热要求。现介绍一种应用于城市轻轨牵引变流器的冷却单元,其利用了平板微热管阵列的特性,并对散热效果加以改良。改变肋高、肋片倾斜角度,利用模拟软件ICEPAK对改良方法进行模拟,最终结果表明,利用平板微热管阵列作为散热肋片并加以优化,符合大功率设备散热要求。  相似文献   

8.
电源插件AC/DC电源模块工作时,发热量较大,因此本文采用SolidWorks软件对电源模块插件进行建模并采用ANSYS Icepak软件进行散热性能模拟分析,根据模拟结果得出:AC/DC电源模块本身发热较为严重,增加散热片后,在额定工作状态下,插件内AC/DC电源模块最高温度降低,但插件内其它器件温度变化较小。增加散热孔后,插件内部空间及所有器件温度均降低,散热孔开孔率越大,散热性能越好。同时采用散热片和散热孔后,电源插件内部AC/DC模块温度降低12.31℃,DC/DC模块温度降低8℃,印制板温度降低12.27℃,插件散热性能提升。仿真模拟结果为插件散热性能分析提供重要参考依据,为插件散热性能优化提供设计思路。  相似文献   

9.
为了降低界面热阻对微通道散热性能的制约,提出了一种组件壳体内置微通道散热单元的设计架构,以满足新一代高功率芯片T/R组件的热控需求.对内置微通道的传热特性进行数值仿真分析,优选出最佳结构参数组合.基于优选设计参数,整合UV-LIGA微细加工技术、精密扩散焊接技术及微组装技术,完成内置微通道散热单元T/R组件的模拟样件研...  相似文献   

10.
采用灌注抽真空微热管制造技术,制备了具有不同真空度的微热管样件组。搭建微热管性能测试平台,对其启动和等温性能进行实验研究。实验结果表明:适当提高启动温度可以使真空度较高的微热管顺利避开声速极限和携带极限,使其成功启动;真空度对微热管启动时间影响不大,启动温度为50℃时,样件组微热管在10s内能成功启动;提高真空度能降低微热管两端温差,优化等温性能;随着蒸发段加热温度的升高,微热管轴向温度分布曲线的转折点向集气段移动。  相似文献   

11.
甲醇/丙酮振荡热管的传热性能研究   总被引:2,自引:0,他引:2  
作为高效传热元件,振荡热管在解决微小空间但热通量较高的电子器件散热方面具有独特的优势,其工质的选取对振荡热管的传热性能具有重要影响。采用甲醇、丙酮纯工质及两者不同配比(7︰1,4︰1,1︰4,1︰7)的混合工质,对不同充液率(45%,62%,70%)和加热功率(10~100 W)工况时的热阻特性进行试验,分析甲醇、丙酮工质的物性及其相互作用特性对振荡热管传热性能的影响,得到甲醇/丙酮二元混合工质振荡热管的传热特性。结果表明:小充液率时,振荡热管蒸发段均出现明显的烧干现象,混合工质振荡热管烧干时热阻较纯工质小,即在50 W时,甲醇、丙酮纯工质振荡热管热阻分别为1.509℃/W、1.484℃/W,而甲醇/丙酮1︰7时振荡热管热阻为0.88℃/W,其他配比时热阻在纯工质及混合工质配比1︰7之间,特别是在丙酮中加入少量甲醇(比如甲醇/丙酮1︰7)能有效地改善振荡热管的烧干情况;大充液率下,混合工质振荡热管热阻随着加热功率的增大变得较为平缓且相互之间相差不是不大,传热性能普遍较好。  相似文献   

12.
针对变频器发热的问题,提出一种S型微通道散热模块,并对其传热性能进行了理论分析,推导得出热阻与结构参数的数学关系式。利用Fluent软件,对S型微通道散热模块的结构参数进行优化,分析其对散热性能的影响,并进行了实验验证。研究结果表明,S型微通道散热模块可有效提升变频器的散热性能,较优的结构参数为:流道水力直径为1.4 mm、流道宽高比为3∶1、弯曲曲率半径为30 mm。将S型微通道散热模块与铜圆管铸铝散热模块进行了仿真及实验比较,结果表明前者基体平均温度比后者要低2.3℃,热阻降低了20.38%,说明S型微通道散热模块具有较好的散热性能。  相似文献   

13.
热干扰特性是影响微热板气体传感器阵列热结构设计的重要因素之一。为探讨微热板阵列传感器单元之间的热力学特性关系,设计并制备了具有独立式加热功能的热隔离结构4单元微热板气体阵列,传感器阵列单元由Al N陶瓷衬底、Pt膜电极组成,为提高加热效率,阵列单元中间加热区采用激光微加工刻蚀热隔离通孔设计,与边缘形成微梁连接结构。利用有限元法对传感器阵列结构进行了热干扰仿真分析,验证了热隔离结构设计的合理性。给出了4种热干扰测试模式,并进行了热干扰特性测试分析,给出了4单元之间的热干扰规律曲线,得出传感器单元功耗300m W时最大干扰温度达169.6℃,最小热干扰温度84.7℃。热隔离通孔设计可有效降低传感器单元热传导损耗,热干扰分析对微热板传感器阵列的热结构设计具有重要意义。  相似文献   

14.
为考察矩形肋片散热器几何参数对散热效果的影响规律,文中应用热仿真分析软件Flotherm对矩形肋片散热器在不同结构参数下的模型进行了自然对流散热计算,通过对比分析不同模型的温度和热阻计算结果,探讨了散热器基板参数和肋片参数对其散热性能的影响。分析表明,改变散热器肋片的高度、长度和间距可有效降低散热器的热阻。这些几何参数可以作为散热器热设计变量,以进一步对散热器进行优化设计。  相似文献   

15.
为了提高空间热控分系统的散热调节能力和热环境适应性,设计了一种微米行程的微膨胀型热开关。介绍了热开关的结构组成和工作原理,通过理论-仿真-试验相结合的方式,计算评估了热开关的断开热阻、闭合热阻和开关比等关键热特性。依据热阻网络串并联关系计算热开关的理论特性,断开热阻为301.71K/W,闭合热阻为1.06K/W,开关比约为283.6。基于有限元模型分析热开关断开/闭合过程的瞬态热特性,热端发热功率为18 W时,热开关闭合响应时间为340s,触发温度为35.5℃,闭合热阻约为2.3K/W。在2次热开关性能测试试验中,闭合热阻和开关比分别为1.08K/W、279.4和1.67K/W、180.7,试验数据与理论计算高度一致。同时指出:装配调试过程的不确定性会造成微膨胀型热开关宏观热特性的小区域波动。本文工作可为后续微膨胀型热开关的结构优化设计、机械加工细化和装调方式改进提供参考。  相似文献   

16.
微热管作为一种新型的热管技术,被广泛应用于航空航天、军用武器等领域,是解决高热流密度电子元器件散热的主要途径之一。槽道微热管凭借其结构简单、导热性能优越、等温性能优良等优点,近年来受到国内外学者的广泛关注,已成为热管技术中重要的发展方向和研究热点。介绍了槽道微热管在新型吸液芯结构、传热性能、吸液芯制备工艺等方面的研究进展。综合近年来对槽道微热管的研究进展,分析了槽道微热管研究中存在的待解决问题,并阐述了未来槽道微热管的发展趋势。  相似文献   

17.
比较几种大功率LED封装基板材料   总被引:3,自引:0,他引:3  
研究人员往往通过改变热沉材料、改进封装结构和散热结构等方式来解决大功率LED的散热问题。本文采用简化的等效封装模型,对几种基板材料的等效热阻进行计算,用计算结果来进行比较,从而选择出更为合适的可用于封装大功率LED的基板材料。  相似文献   

18.
介绍了一种基于硅体加工技术以及阳极键合技术的微热管阵列.通过两种传热模型对微热管的性能进行了分析.利用传统热管理论及经典传热理论对传热性能进行定量计算,将传热过程逐步分解并建立传热模型,对热管热阻进行估算.这种较简易的分析模型可为热管设计提供初步的参考结果.再利用有限元法以同样的参数来模拟热管传热过程以得到更加精确的热阻及热场分布结果,采用Ansys软件来进行有限元的分析.  相似文献   

19.
压电激振器是超声导波无损检测应用中的关键部件,针对激振器对压电驱动电源高带宽和大功率的要求,设计并研制了一种基于高压运放MP108的压电陶瓷驱动电源。采用直接数字频率合成技术产生信号源,信号经过前级放大和滤波后输入到高压运放电路驱动压电陶瓷。分析了大功率驱动电源的散热问题,指出驱动电源散热片到空气的最大热阻为1.1℃/W。实验结果表明,当负载为10 nf时,驱动电源在10~300 k Hz的频带范围内能够实现100Vp-p的放大输出,基本满足超声导波压电激振器的驱动要求。  相似文献   

20.
基于热阻解析模型,对微波功率组件基板热阻进行了理论分析,获得无量纲基板参数与基板热阻的关系曲线。借助于数值仿真计算了基板厚度对微波功率组件芯片温度的影响,并根据理论分析模型,分别测试了不同热耗和不同基板厚度条件下的芯片温度,分析了厚度、热耗和芯片温度的关系。试验结果与理论分析一致,研究结果有助于改善高热流密度微波功率组件的芯片性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号